рефераты

рефераты

 
 
рефераты рефераты

Меню

Теория Эволюции (шпаргалка) рефераты

Гены, каждый из которых сам по себе дает незначи­тельный кумулятивный эффект, а в сумме они контроли­руют непрерывную изменчивость, называются полигена­ми. Особенно много занимался изучением полигенов анг­лийский исследователь Мазер. Между генами с сильным действием (главными генами) и генами со слабым действием (полигенами) нет абсолютного различия, по­скольку гены могут вызывать также промежуточные эф­фекты. Более того, гены, оказывающие сильное действие на одни признаки, могут оказывать слабое действие на другие. Н-р, гены, контролирующие окраску глаз у дрозофилы, влияют также на размер и форму сперматеки. Может показаться, что непрерывно варьирующий признак, такой, как вес человека, не может контролироваться отдельными гена­ми, имеющими четкое проявление. Однако еще в 1909 году Нильсон-Эле показал возможность контроля количест­венного признака многими генами с небольшим кумулятивным эффектом.

Предположим, н-р, что растение, гомозиготное по трем парам генов ААВВСС, действующим на вес семян, при определенных условиях имеет семена, весящие 54 мг. (Вследствие различий во внешних условиях вес семян будет варьировать вокруг этой средней величины.) Это растение скрещивают с гомозиготой aabbcc, имеющей средний вес семян 30 мг. Если каждый локус оказывает одинаковый и кумулятивный эффект и нет доминирова­ния, то гетерозигота АаВbСс будет иметь средний вес семян 42 мг. При скрещивании двух таких гетерозигот в потомстве получаются растения с разным весом семян.

Получается 7 классов, т.к. замена одного аллеля, обозначенного маленькой буквой, на аллель, обо­значенный большой буквой, увеличивает вес семян на 4 мг. Однако, поскольку скрещивание тригетерозигот дает 27 различных генотипов, некот. генотипы имеют сход­ный средний вес семян. Н-р, растение с генотипом АаВbСс дает семена со средним весом 42 мг, так же как растения генотипа ААВbсс, ааВbСС и некот. другие. Это вызвано тем, что каждый из этих генотипов имеет три доминантных аллеля, обозначенных большими бук­вами. Следовательно, растения с тремя доминантными аллелями будут иметь семена на 12 мг тяжелее по срав­нению с гомозиготным растением aabbcc. Поскольку три разных по генотипу растения имеют средний вес семян 42 мг, то генотип растений нельзя определить по весу се­мян. Кроме того, вес семян в сильной степени варьирует вследствие колебаний условий среды. Положе­ние значительно осложняется, если происходит расщепле­ние по многим генам и ненамного упрощается даже в том случае, если наблюдается доминирование. Уже при трех генах изменчивость становится почти непрерывной, осо­бенно если условия среды вызывают вариацию веса, срав­нимую с заменой одного аллеля на другой.

Если изменчивость, вызываемая средой, больше, чем изменчивость, вызываемая отдельными генетическими факторами, то менделевские соотношения при скрещи­вании не наблюдаются. Следовательно, для изучения ко­личественной изменчивости обычные менделевские мето­ды неприменимы. Несмотря на это, можно доказать, что изменчивость контролируется генами, расщепляющимися в соответствии с законами Менделя. При наследовании признаков, определяемых генами, каждый из родителей вносит равный вклад (если только нет сцепления с по­лом). Следовательно, обычно потомство от реципрокных скрещиваний д.б. сходным между собой. Если не сходно (и нет сцепления с полом), то это м. б. вызвано действием факторов, локализованных и в цитоплазме, и в ядре.

Выяснив отсутствие цитоплазматической наследственности, м.показать расщепление ядерных генов. Если различия наследуются по Менделю, можем предсказать результаты различных скрещи­ваний и выяснить, подтверждаются ли наши предсказа­ния. Если взять две различные линии и длительное время вести в них инбридинг, то эти линии станут гомозигот­ными почти по всем локусам, а любая изменчивость внутри них будет вызвана внешними условиями, и изме­нения не будут наследоваться. При скрещивании двух таких линий потомки F1 будут гетерозиготны по всем генам, по которым различаются эти линии, генетически одинаковы, но отличны от родителей. Следовательно, из­менчивость между особями первого поколения опять бу­дет вызвана лишь внешними условиями. В действительности размах изменчивости тем больше, чем больше особей исследо­вано, так что на практике его определяют статистической мерой изменчивости, называемой вариантой.

В F2 образуется много новых генотипов, имеющих средний вес семян 42 мг. Но теперь уже размах измен­чивости средних величин будет от 30 до 54 мг, а практи­чески вследствие влияний среды и генотипов от 24 до 60 мг. Отсюда ясно, что второе поколение гораздо более изменчиво, чем первое. (Это полностью исключает гипотезу слитной наследст­венности, ибо согласно ей второе поколение д.б. менее изменчиво, чем первое.) Если получают третье поколение, то результат будет зависеть от того, какой генотип будут иметь родительские пары. Средний вес семян будет варьировать от семьи к семье, изменчивость внутри семей будет больше, чем в F1, но меньше, чем в F2. Если, н-р, мы случайно выбрали исходную пару родителей с генотипами ААВВСс и ААbbСС, то по­томство будет состоять из растений с генотипом ААВЬСС со средним весом семян 50 мг и варьированием от 44 до 56 мг и генотипом ААВbСс со средним весом семян 46 мг и варьированием от 40 до 52 мг. Размах общего варьиро­вания будет 16 мг — от 40 до 56 мг, т. е. меньше, чем в F2, но больше, чем в F1 или в любой из исходных родитель­ских линий. Мы можем, однако, выбрать две особи с ге­нотипами aabbCc и ааВЬСс, потомство которых будет иметь средний вес семян 36 мг с общим варьированием от 24 до 48 мг. Размах варьирования снова меньше, чем в F2, но средняя отличается от размаха варьирования других семей F3. Т. о., если непрерывная из­менчивость контролируется взаимодействием менделевских факторов (генов) и средой, то инбредные линии при скрещивании дадут в F1 изменчивость, сходную с роди­тельскими формами, большую изменчивость в F2, а в F3 размах изменчивости будет больше, чем в F1, но меньше, чем в F2. Кроме того, в F3 средние величины будут ме­няться от семьи к семье.

плейотропное действие гена

Зачастую, учитываемый при генетическом анализе признак является лишь частным проявлением. Для того чтобы иметь представление о полном проявле­нии гена, необходимо изучить его действие на всех этапах развития организма, что не представляется пока возможным.

Наследования окраски ширази у каракульских овец и платиновой окраски у чернобурых лисиц. Доминантные гены, в этих случаях определяющие окраску, одновременно оказываются рецессивными в отношении жизнеспособности особей. У крупного рогатого скота и кур известна наследственная коротконогость. Такие формы встречаются только в гете­розиготном состоянии. Гомозиготные формы гибнут, т. е. в этом случае гены коротконогости также влияют на жизнеспособность особей. Эти примеры свидетельствуют о плейотропном действии гена. Вероятно, все гены в разной степени имеют плейотропный эффект.

Т. о., после рассмотрения множественного действия генов и их взаимодействия мы вправе сказать, что любой наслед­ственный признак определяется  многими  генами, точнее всем генотипом, и что каждый ген может действовать на развитие многих признаков, или точнее — на всю систему развивающегося организма.

На этом основании генетики уже давно ввели в обиход понятие о генах -модификаторах. Причем некот. исследователи различают гены основного действия, т.е. такие, кот. определяют развитие признака или свойства, н-р выработку пигментов, наличие или отсутствие цианида, устойчивость или чувствительность к заболеваниям и т. д., и такие, кот. сами по себе не определяют какую-либо качественную реакцию или признак, а лишь усиливают или ослабляют проявление действия основного гена. Одни из генов-модификаторов могут усиливать эффект, и их называют йнтенсификатарами; другие ослабляют эффект основного гена, и их называют подавителями (супрессорами)

эпистаз

Как известно, доминирование есть подавление действия одной аллели другой аллелью, представляющих собой один ген: А > а, B > b, C > с и т. д. Но существует взаимодействие, при котором аллель одного из генов подавляет действие аллелей других генов, н-р А > В или В > А, а > В или b > А и т. д. Такое явле­ние «доминирования» между генами называется эпистазом.

Эпистатическое взаимодействие генов по своему характеру про­тивоположно комплементарному взаимодействию.

В настоящее время эпистаз делят на два типа: доминантный и рецессивный.

Под доминантным эпистазом понимают подавление доминантной аллелью одного гена действия аллельной пары другого гена.

Пример. Некот. породы кур имеют белое оперение (белый леггорн, белый примутрок), другие же породы имеют окрашенное опе­рение (австралорп, ньюгемпшир, полосатый плимутрок и др.). Белое оперение разных пород кур определяется несколькими различными генами. Так, н-р, доминантная белая окраска опре­деляется генами ССII (белые леггорны), а рецессивная белая — ccii (белые суссексы, белые минорки, белые плимутровки). Ген С опре­деляет наличие предшественника пигмента (хромогена), т. е. окра­шенность пера, его аллель с — отсутствие хромогена и, следова­тельно, неокрашенность пера птицы. Ген I является подавителем действия гена С, аллель i не подавляет его действия. В присутствии даже одной дозы гена I в генотипе птицы действие генов окраски не проявится. Поэтому при скрещивании белых ССII с цветными породами ССii, как правило, доминирует белая окраска CCIi. При скрещивании белых плимутрок ccii с окрашенными породами CCii гибриды F1 оказываются окрашенными Ccii. Следовательно, у леггорнов белая окраска является доминантной, а у плимутроков — рецессивной.

Если же производится скрещивание белых леггорнов ССII с рецессивными  белыми  плимутроками  ccii,   то  в  первом  поколении цыплята оказываются тоже белыми СсIi. При скрещивании между собой гибридов F1 во втором покилении имеет место расщепление по окраске в отношении  13/16 белых : 3/16 окрашенных. Прежде всего данное отношение говорит о расщеплении по двум генам, это расщепление можно    представить    как    9(С-I-) + 3(ссI-) + 1(ccii) = 13  и 3(С—ii), что соответствует формуле 9:3:3:1.

Очевидно, в этом случае окраска леггорнов обязана не присут­ствию особых генов белой окраски, а действию гена – подавителя окраски (I—). Тогда генотип гомозиготных белых леггорнов д.б. ССII, где I является геном — подавителем окраски а С — ге­ном окраски. Белые плимутроки по генотипу д.б. гомозиготными по двум рецессивным факторам ccii, где с — отсутствие окраски и i — отсутствие подавления окраски. В силу эпистатирования I > С гибридные куры первого поколения CcIi д.б. белыми. В F2 все куры с генотипами 9/16 С—I—, 3/16 ccI— и 1/16 ccii также д.б. белыми, и лишь куры одного фенотипического класса 3/16 (С—ii) оказываются окрашенными, поскольку здесь со­держится ген окраски и нет его подавителя.

Т. о., подавление действия доминантной аллели гена, определяющего развитие окраски, доминантной аллелью другого гена (подавителем) обусловливает в F2 расщепление по фенотипу в отношении 13 : 3.

Доминантный эпистаз может давать и другое отношение при расщеплении в F2 по фенотипу, а именно 12 : 3 : 1. В этом случае форма, гомозиготная по обоим рецессивным факторам aabb, будет фенотипически отличима от форм с доминантными аллелями двух генов А—В— и форм с одной из них: ааВ— и А—bb. Такое рас­щепление установлено для наследования окраски плодов у тыквы, кожуры у лука и других признаков. В этом случае в расщеплении также принимает участие доминантный ингибитор.

Мы разобрали взаимодействие только двух генов. В действи­тельности по типу эпистаза взаимодействуют многие гены. Гены-подавители обычно не. определяют сами какой-либо качественной реакции или синтетического процесса, а лишь подавляют действие других генов. Однако когда мы говорим, что ген-подавитель не имеет своего качественного влияния на признак, то это относится только к данному признаку. На самом же деле ингибитор, подавляя, н-р, пигментообразование, может оказывать плейотропное действие на другие свойства и признаки.

Под рецессивным эпистазом понимают такой тип взаимодействия, когда рецессивная аллель одного гена, будучи в гомозиготном состоянии, не дает возможности проявиться доминантной или рецес­сивной аллелям других генов: аа > В или аа > bb.

Расщеплением 9:3:4 как результатом комплементарного взаимодействия генов. Но эти же случаи можно рассматривать и как пример рецессивного эпистаза.

При скрещивании черных мышей (AAbb) с белыми (ааВВ) все особи F1 (АаВЬ) имеют окраску типа агути, а в F2 9/16 всех особей оказываются агути (А—В—), 3/16 черные (A—bb) и 4/16 белые (ааВ— и aabb). Эти результаты можно объяснить, предположив, что имеет место рецессивный эпистаз типа аа > В—. При этом мыши генотипа ааВ— оказываются белыми потому, что ген а в гомозиготном состоянии, обусловливая отсутствие пигмента, препятствует тем самым проявлению гена-распределителя пигмента В.

Кроме описанных случаев одинарного рецессивного эпистаза, существуют и такие, когда рецессивная аллель каждого из генов в гомозиготном состоянии одновременно реципрокно подавляет дей­ствие доминантных аллелей каждого из генов, т. е. аа эпистатирует над В—, a bb над А—. Такое взаимодействие двух подавляющих рецессивных генов называют двойным рецессивным эпистазом. При этом в дигибридном скрещивании расщепление по фенотипу будет соответствовать 9 : 7, как и в случае комплементарного взаимо­действия генов.

Следовательно, одно и то же отношение можно трактовать и как комплементарное взаимодействие, и как эпистатирование. Сам по себе генетический анализ наследования при взаимодействии генов без учета биохимии и физиологии развития признака в онтогенезе не может раскрыть природы этого взаимодействия.


множественный алеллизм

Один и тот же ген может изменяться в несколько состояний; иногда таких состояний бывает несколько десятков и даже сотен. Ген А может мутировать в состояние а1, а2, а3, ..., аn или ген В в другом локусе — в состояние b1, b2, b3, ..., bn и т.д. Мутации одного и того же локуса называют серией множественных аллелей, а само явление — множественным аллелизмом.

Изучение мутаций серии множественных аллелей показало, что:

1) любая аллель такой серии может возникать мутационной непосредственно от аллели дикого типа или любого другого члена данной серии;

2) любая аллель серии может мутировать в другую как в пря­мом, так и в обратном направлении;

3) каждый из членов серии, по-видимому, имеет свою характер­ную частоту мутирования;

4) серии множественных   аллелей   в   разных   локусах могут иметь различное число членов.

Наследование членов серии множественных аллелей подчи­няется менделевским закономерностям. При этом имеет место следующее:

1) серия множественных аллелей у каждого диплоидного орга­низма может быть представлена одновременно только двумя любыми ее членами, н-р:

Аа1,    Аа2,    а1а3,    а1а3,    a2a3   и т. д.;

2)каждый из членов серии может полностью или не полностью доминировать над другим ее членом,н-р:

А>а1>а2>а3 и т. д.;

3) члены одной серии действуют на один и тот же признак; одновременно они могут иметь множественный эффект.

У одного и того же вида растений или животных целый ряд локусов может быть представлен серией множественных аллелей. Серии множественных аллелей обнаружены и у человека. Распространенность этого явления среди животных, растений и микроорганизмов могла быть обусловлена несколькими причинами: множественный аллелизм увеличивает резерв мутационной измен­чивости в эв-ции, в силу чего он приобрел приспособительное значение.

У человека известны четыре группы крови: А, В, АВ и 0. Если взять кровь от человека группы АВ или А или В и перелить другому человеку, имеющему кровь группы 0, то последний может погибнуть. Причина этого заклю­чается в следующем. Эритроциты группы АВ содержат два анти­гена: группа А — антиген А, группа В — антиген В, группа О не содержит антигенов А и В. Сыворотка крови этих четырех групп различается следующим образом: группа 0 имеет два антитела,

Гетерозиготы А0 и В0 не отличаются по фенотипу от гомози­гот. В настоящее время генетические исследования групп крови, т. е. установление генов, определяющих антигенные различия, показывают, что каждая группа зависит от целого ряда аллелей однозначного действия (А1, А2, А3 или В1, В2, В3 и т. д.). Кроме того, некот. авторы считают, что существуют люди с генотипа­ми 00, имеющие 0 группу крови, эритроциты которых об­ладают антигенными свойствами и имеют соответствующие антитела.

В настоящее время не совсем ясно, все ли локусы могут иметь серии множественных аллелей. Предполагалось, что последние обнаруживаются лишь для некоторых локусов хромосом. Но по мере исследования отдельных генов у наиболее изученных форм, в свете современных данных о строении гена, складывается впечатление, что каждый локус может быть представлен серией множе­ственных аллелей с большим или меньшим числом членов. Следует отметить, что у близких видов встречаются сходные серии аллелей (н-р, в пределах отряда грызунов и др.). Это говорит о гомо­логии наследственной изменчивости идентичных локусов хромосом у родственных видов.

Т. о., исследование множественного аллелизма пока­зывает,  что ген  как наследственная  единица может мутировать в ряд состояний.

Генетический гомеостаз. Полиморфизм

Одним из наиболее интересных результатов проводившихся в последнее время экспериментов по исследованию отбора является обнаружение тенденции фенотипов, подвергнутых сильному дав­лению отбора по определенному фенотипическому признаку, воз­вращаться к своему первоначальному состоянию после прекра­щения давления отбора. Лернер (1954) назвал это явление генетическим гомеостазом, определив его как «свойство популяции сохранять равновесие своего гене­тического состава и противостоять внезапным изменениям». Это явление также называли «генетической инерцией».

Причина генетического меостаза должна быть ясна из пред­шествующего рассмотрения. Существующий в природе фенотип представляет собой продукт генотипа, кот. создавался в те­чение длительного отбора на максимальную приспособленность. Всякий отбор в пользу нового фенотипа вызывает отход от преж­него интегрированного генотипа и ведет, Т. о., к сни­жению приспособленности либо вследствие накопления гомози­готных рецессивов, либо вследствие дисгармонии между получив­шими предпочтение генами и остальным генотипом. Ослабление отбора в пользу нового фенотипа делает возможным хотя бы ча­стичный возврат посредством естественного отбора к исторически сложившемуся сочетанию, которое обеспечивало максимальную приспособленность, в частности возврат к гетерозиготным комби­нациям. В качестве побочного продукта при этом частично вос­станавливается первоначальный фенотип. Генетический гомео-стаз хорошо объясняет многие явления, кот. раньше были непонятны. Если две родственные, но длительное время изоли­рованные человеческие расы сохраняют одинаковую частоту раз­личных дерматоглифических узоров или распределение по груп­пам крови, несмотря на многочисленные давления отбора, благо­приятствующие изменению этой частоты, то это поддержание изначальной частоты вполне может быть обусловлено преиму­ществом именно такой частоты на общем генетическом фоне. В сущ­ности, генетический гомеостаз может быть причиной всех случаев эволюционного «застоя».

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16