рефераты

рефераты

 
 
рефераты рефераты

Меню

Теория Эволюции (шпаргалка) рефераты

Кубинский ламантин, кубинский щелезуб. Парадоксальный щелезуб (Гаити).

8 СЕМИНАР  Симпатрическое видообразование.

Симпатрический (от греч. allos-иной,  patris-родина) путь видообразования – новый вид возникает внутри ареала исходного вида.

Первый способ симпатрического видообразования – возникновение новых видов при быстром изменении кариотипа, н-р при автополиплоидии (самопроизвольное умножение числа хромосом, 3n,4n). Так н-р в роде хризантем все виды имеют число хромосом кратное 9,18,27,36,45,…,90. В родах табака и картофеля основное, исходное, число хромосом равно 12, но имеются формы с 24, 48, 72 хромосомами.  Т.е. логично предположить что видообразование шло посредством удвоения, утроения, учетверения и т.д. Процессы полиплоидизации хорошо воспроизводятся в эксперименте посредством задержки расхождения хромосом в мейозе в результате воздействия н-р колхицина. Возникшие полиплоидные особи могут давать жизнеспособное потомство лишь при скрещивании с особями, несущими то же число хромосом (или при самоопылении). В течение немногих поколений в том случае, если полиплоидные формы успешно проходят «контроль» естественного отбора и оказываются лучше исходной диплоидной, они могут распространиться и сосуществовать вместе с породившим их видом или, что бывает чаще, просто вытеснить его. Полиплоидные формы, как правило, крупнее, но общий облик растений сохраняется и способны существовать в более суровых условиях. Среди животных полиплоидия при видообразовании  играет несравненно меньшую роль, чем у растений, и во всех случаях связана с партеногенетическим способом размножения (н-р, у иглокожих, членистоногих, аннелид и других безпозвоночных).

  Второй способ с. вид-ия –путём гибридизации с последующим удвоением числа хромосом–аллоплоидия. Обычен у растений: по некоторым подсчётам, более 50% видов растений представляют собой гибридогенные формы–аллоплоиды. Культурная слива (Prunus domestica) с 2n=48 возникла путём гибридизации терна (P. Spinosa, 2n=16) с последующим удвоением  числа хромосом. Некот. виды пикульника, малины, табака, брюквы и др. также аллоплоиды гибридогенного происхождения. Гибридогенные формы отличаются от родительских но также сочетают признаки обоих предковых видов.

Третий способ симпатрического видообразования–возникновение новых форм в р-ате сезонной изоляции. Известно сущ-ие ярко выраженных сезонных расс у растений, н-р у погремка, раннецветущие и позднецветущие формы которого полностью репродуктивно изолированы друг от друга, и, если условие отбора сохраняется, лишь вопрос времени– когда эти формы приобретутранг новых видов. Аналогично положение с яровыми и озимыми расами проходных рыб; возможно что эти формы уже являются разными видам, очень схожими морфологически, но изолированными генетически (виды двойники). В ходе экологической ( сезонной) изоляции  возникающие формы оказываются морфологически слабо различимыми.

Особенностью симпатрического пути видообразования является возникновение новых видов, морфологически близких к исходному виду.

Семинар №9. Генетические процессы в популяции. Популяция – совокупность свободно скрещивающихся особей одного вида, длительное время населяющих данное местообитание, характеризующаяся приспособления к данным условиям существования, образующаяся свою генетическую систему и формирующая собственную экологическую нишу.

Популяция характеризуется:

1) ареалом – ареал зависит от радиусов индивидуальной или репродуктивной активности.

2) численностью

3) динамикой – размеры и по численности и по площади подвержены постоянным изменениям. Выделяют сезонные и несезонные (периодические и непериодические) колебания численности.

4) возрастной состав, на кот. влияет общая продолжительность жизни, время достижения половой зрелости, интенсивность размножения.

5) половой состав, первичный, обеспеченый гентически 1:1, но в силу различных явлений может быть сильно изменен, возникать вторичный (при родах) и третичный (для взрослых особей). У человека рождается 106 мальчиков на 100 девочек, к 16-18 годам соотношение выравнивается из-за повышенной мужской смертности, а с возрастом мужчин становится меньше чем женщин. У некоторых насекомых встречаются партеногенетические популяции, состоящие только из самок. Кроме того часто наблюдаются явления переопределения пола. У червя Bonnelia viridis личинка развивается в самку, если не смогла прикрепиться к взрослой самке, если прикрепилась – формируется самец, кот. паразитирует на самке.

6) морфофизиологическими характеристиками – количественным соотношением разных аллелей. Зачастую популяция отграничена именно благодаря определенным отличительным признакам – фенам. Н-р в Англии есть популяции крыс, не чувствительные к антикоагулянту.

7) генетической гетерогенностью,

8) генетическим единством,

9) экологическим единством, популяция формирует свою экологическую нишу, занимает специфическое место в гиперпространстве.

Любые две особи в популяции имеют возможность скреститься и оставить потомство и при этом формируют единый генофонд; гены адаптируются друг к другу, имеется определенное сочетание генов, определенное их соотношение.

Четвериков в природе популяция характеризуется генетическим разнообразием (насыщена рецессивными мутациями). Каждая особь имеет свои генотипические особенности, кот. в совокупности представляют наследственную изменчивость вида – генофонд вида.Но, несмотря на гетерогенность составляющих ее особей, любая популяция представляет собой сложную генетическую систему, находящуюся в равновесии. Особи одной популяции и даже одного вида кажутся нам относительно однообразными. Естественный отбор обеспечивает с одной стороны однообразие, а с другой разнообразие.Каждой популяции, в пределах которой особи длительное время скрещивались друг с другом на определенной территории, при определенных климатических условиях присущ свой характер изменчивости.

 Источники наследственной изменчивости в популяциях: 1) мутационная изменчивость, 2) комбинативная изменчивость.

Первостепенное значение для существования популяции имеют различные типы наследственной изменчивости: 1) генные мутации, 2) хромосомные перестройки, 3) полиплоидия (=геномные мутации).

Ненаследственные изменения (модификации) играют ограниченную роль.

Популяция складывается на основе взаимодействия факторов 1) наследственность, 2) изменчивость, 3) отбор; под влиянием условий существования. Образование популяции – способ «подстройки» вида к конкретным условиям его существования.

Генетическая структура популяций самооплодотворяющихся организмов

1903 г. А. Иогансен «О наследовании в популяциях и чистых линиях».

Исследовал семена ячменя, фасоли, гороха. Каждую такую популяцию можно разложить на группы потомков отдельных особей, т.е. выделить чистые линии.

Чистая линия – индивиды, кот. происходят от одного самооплодотворяющегося (автогамного) индивида». => популяция самооплодотворяющихся организмов состоит только из чистых линий, индивиды которых не скрещиваются между собой.

Исследовал признаки: вес и размер семян, т.к. определяются многими генами, в сильной степени подвержены изменчивости под влиянием внешних условий, для установления характера их наследования используются математические методы анализа изменчивости.

В течение 7 поколений Иогансен проводил отбор тяжелых и легких семян в пределах чистых линий => не происходило сдвига в сторону тяжелых или легких семян, т.е. изменчивость по весу семян внутри чистой линии была ненаследственной модификацией.

Соответственно популяции самооплодотворяющихся (автогамных) растений состоит из генотипически разнородных линий. Особи такой популяции не скрещиваются между собой => не обмениваются наследственной информацией. Сущ-ие популяций основывается на строгом естественном отборе линий определенного генотипа, на общности приспособительных механизмов к однотипным условиям внешней среды => изменения популяций автогамных видов основываются на отборе определенных линий и клонов, имеющих адаптивные преимущества.

Чистые линии обладают высокой гомозиготностью, но не могут быть абсолютно гомозиготными, т.к.:

Нет абсолютных самоопылителей => в популяции редко, но встречаются процессы скрещивания и обмена наследственной информацией.

У растений самоопылителей встречаются мутации, препятствующие самоопылению (самонесовместимость)

Даже за одно поколение в чистых линиях возникает большое число разнообразных мутаций.

В популяциях самооплодотворяющихся организмов происходит процесс гомозиготизации. Отбор в чистых линиях неэффективен.

Уравнение Харди – Вайнберга не работает.

Генетическая структура популяций перекрестнооплодотворяющихся организмов


Панмиктическая популяция – сообщество свободно-скрещивающихся генотипически различных организмов внутри вида.

Сочетание разных гамет при оплодотворении определяют наследственную структуру следующих поколений => численность особей определенного генотипа определяется частотой встречаемости гамет, произведенных генотипически различными родительскими организмами.

Организмы, генотипы которых обеспечивают наилучшее приспособление к условиям существования, производят большее число гамет => частота того или иного гена в популяции будет определяться естественным отбором.

Джонс и Ист скрестили две разновидности табака, различавшиеся по длине венчика. Растения F1 были скрещены между собой. В F2 выделили 2 линии – с короткими и длинными венчиками и через 5 поколений нормы реакции по длине венчика даже не перекрывались. Следовательно отбор расчленяет популяцию на разные генотипы. В данном опыте искусственный отбор был проведен по одному признаку с преднамеренным скрещиванием растений. В природе же естественный отбор осуществляется по многим признакам и либо сохраняет и поддерживает популяцию в целостном состоянии, либо разлагает ее соответственно конкретным условиям существования.

В опытах по исследованию естественных популяций дрозофил Четвериков доказал, что природные популяции насыщены мутациями.

Разнообразие генотипов в популяции обеспечивается: а) мутационной изменчивостью, б) комбинативной изменчивоcтью. Вновь возникшая мутация, чтобы стать достоянием популяции должна сохраняться и размножаться, т.е. оказаться в составе генотипов целого ряда организмов. Генотипы организмов насыщены мутациями, кот. находятся в гетерозиготном состоянии. По мере увеличения концентрации мутаций в популяции они переходят в гомозиготное состояние.


Наследование в популяции

а) равновесие в панмиктичной популяции

Поскольку в пан­миктической популяции наследственная структура следующего поколения воспроизводится за счет разнообразных сочетаний различных гамет при оплодотворении, численность особей того или иного генотипа будет определяться частотой разных типов гамет, произведенных родительскими организмами. Одним из путей изучения генетики панмиктической популяции является исследование характера и частоты распределения в ней особей, гомозиготных и гетерозиготных по отдельным генам.

Представим, что в какой-то выборке число форм, гомозигот­ных по разным аллелям одного гена, т. е. АА и аа, одинаково. Такая выборка будет производить равное число мужских и жен­ских гамет с генами А и а. Особи — носители данных генов свободно скрещиваются между собой, то встреча гамет при оплодотворении является случайным, событием, в результате чего возможны три комбинации. Решетка Пеннета, нетрудно заметить, что в F1 доминантные гомозиготы АА бу­дут возникать с частотой 0,25, гетерозиготы Аа — 0,5 и гомози­готы по рецессивной аллели аа — 0,25. В следующем поколении при том же условии равновероятного образования разных ти­пов гамет частота их с доминантной аллелью А будет равной 0,5 (0,25 от доминантных гомозигот AA + 0,25 от гетерозигот Аa). Частота гамет с рецессивной аллелью а составит также 0,5 (0,25 от гомозигот аа + 0,25 от гетерозигот Аа). Поэтому отно­сительная частота образования разных генотипов при свобод­ном скрещивании в популяции вновь будет 0.25AA : 0,50Aa : 0,25aa. Итак, в каждом поколении относительная частота га­мет с доминантной и рецессивной аллелями гена будет сохра­няться на одном уровне: 0,5A (АА + 1/2Аа) и 0,5а (аа + 1/2Аа).

Однако популяция в большинстве случаев состоит из разно­го числа гомозигот АА и аа: одних может быть больше, чем дру­гих. Разберем следующий пример. У ржи (Secale cereale) изве­стна пара аллелей: А—опушенный стебель, а — неопушенный. Допустим, что в какой-то выборке ржи опушенных растений ока­залось в 4 раза больше, чем ноопушенных (4AA : 1аа). Соотно­шение гамет будет уже не 0,5A : 0,5а, но 0,8A : 0,2а. При условии случайности скрещиваний в потомстве получится следующее расщепление:

жен

муж

0,8 A

0,2 a

0,8 А

0,64 АА

0,16 Аa

0,2 a

0,16 Аa

0,04 aa

Т. о., из каждых 100 растений в среднем 96 будут опушенными (64 гомозиготных и 32 гетерозиготных) и лишь 4 — неопушенными.

В следующем поколении гаметы с аллелью и будут возни­кать с частотой 0,20 (0,04 от гомозигот аа + 0,16 от гетерозигот Аа). Гаметы с аллелью А будут образовываться с частотой 0,80 (0,64 от АА + 0,16 от Аа). Отсюда следует, что в указанной популяции с другим соотношением генотипов также поддержи­вается в ряду поколений одно и то же соотношение частот генов (0,2а : 0,8А). В силу этого опушенных растений будет постоянно 96%, неопушенных — 4%.

2. Закон Харди — Вайнберга.

Харди и Вайнберг независимо предложили формула, отражающую распределение генотипов в панмиктической популяции. Исходили из того, что при определенных условиях, не изменяющих частоту аллелей, популяции имеют определенное соотношение особей с доминантными и рецессивными признаками, а относительные частоты каждой аллели имеют тенденцию оставаться постоян­ными в ряду поколений.

Если частоту встречаемости одной из аллелей в гаметах, до­пустим А, обозначить через q, тогда частота другой аллели (а) будет 1—q. Отсюда в потомстве будут следующие отношения:

муж

жен

qA

(1-q) q

qA

q2AA

 q(1-q)Aa

( 1 — q) a

a(1 - q) Aa

(1 - q)2 aa

Произведя суммирование этих данных, получим формулу Гарди — Вайнберга, отражающую распределение генотипов в популяции:

q2AA + 2q(1 —q)Aa + (l - q)aa = 1

Нетрудно заметить, что это выражение представляет форму­лу бинома Ньютона:

|qA + (1 - q)a|2 = 1

Указанная формула позволяет рассчитывать относительную частоту генотипов и фенотипов в популяции. Зная частоту рас­пространения в популяции рецессивной аллели, проявляющейся в фенотипе в гомозиготном состоянии, легко рассчитать частоту и доминантной аллели.

Следовательно, на основе учета частоты определенных фенотипов в популяции можно составить представление о распределении в ней соответствующих генотипов. Формула Гарди— Вайнберга применима для расчетов при следующих условиях: если учитывается одна пара аутосомных аллелей, спаривание особей и сочетание гамет в популяции совершаются случайно; прямые и обратные мутации происходят настолько редко, что ими можно пренебречь; обследуемая популяция достаточно мно­гочисленна; особи разных генотипов имеют одинаковую жизне­способность, плодовитость и не подвергаются отбору. Очевидно, в природных популяциях эти условия далеко не всегда осуще­ствляются, ограничивая тем самым приложение формулы Гарди—Вайнберга.

в) отбор против рецессивного гена

Концентрация более вредных мутаций в популяции снижается в поколениях скорее, чем менее вредных. И наоборот, концентрация мутаций, имеющих существенное приспособительное значение, будет воз­растать быстрее, чем концентрация мутаций менее полезных.

Скорость устранения доминантных и рецессивных аллелей в популяции различна. Организмы, несущие доминантные леталь­ные гены или гены стерильности, устраняются отбором даже в гетерозиготе, т. е. доминантный ген в каждом поколении нахо­дится под контролем отбора.

Рецессивные мутации, в отличие от доминантных, могут на­ходиться в популяции в скрытом, гетерозиготном состоянии, на­капливаться в ней, создавая огромный мутационный резерв. Рецессивная мутация может подвергнуться отбору лишь в том случае, если она размножится в популяции до определенного уровня и перейдет в гомозиготное состояние.

Чем меньше частота рецессивных аллелей в популяции, тем в большей степени гетерозиготы превосходят в численном отно­шении гомозиготы. Это вытекает из формулы Гарди—Вайнберга. Число рецессивных гомозигот в популяции со­ставляет (1—q)2, в то время как число гетерозигот 2q(1—q). Чем больше будут устраняться отбором из популяций гомо­зиготы, тем больше возрастет роль гетерозигот, кот. явят­ся поставщиками рецессивных аллелей для последующих по­колений.

Довольно часто гетерозиготные формы Аа более жизнеспо­собны, нежели обе гомозиготные АА и аа. В силу этого гетерозиготы обладают селективным преимущест­вом и их сохранение и распространение в популяции обеспечи­вается отбором. Одновременно с этим увеличивается и вероят­ность выщепления рецессивных гомозигот.

Если изначально частота и доминантного и рецессивного мутантного летального в гомозиготе гена была по 0,5. При полной элиминации рецессивных гомозигот,  подсчитывая по уравнению Харди-Вайнберга, убирая рецессивные гомозиготы, за первые 50 поколений частота рецессивного гена уменьшится в 20 раз, а за следующие 50 всего в 2 раза. Т.е. отбор против рецессивного гена малоэффективен.

Популяция как коадаптированная и интегрированная генетическая система.

Коадаптация —взаимное приспособление взаимодействующих аллелей в генофонде популяции.

полигения

Количественная изменчивость может зависеть в боль­шой степени или даже целиком от влияния внешних усло­вий, но однако часть уклонений наследуется. Н-р, вес человека зависит как от условий, в которых растет ребенок, так и от генотипа.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16


 © 2010 Все права защищены.