рефераты

рефераты

 
 
рефераты рефераты

Меню

Реферат: Управление тюнером спутникового телевидения рефераты


1.2.12. Согласующая схема.

          Для организации вывода информации в остальные блоки тюнера будем использовать регистр 1533UP23, тактируемый сигналами от микропроцессора.

          Принцип включения и управления регистра 1533UP23 рассмотрен в предыдущей главе.

          Для приема информации в устройство управления будем использовать шинный формирователь 1533АП6. Как известно шинный формирователь обеспечивает передачу информации в обоих направлениях. Для обеспечения только ввода данных вывод №1 соединим с корпусом. Если появится необходимость в выводе большего количества информации из устройства управления, то с помощью микросхемы 1533АП6 можно будет решить данную проблему.

          Более подробная информация о микросхеме 1533АП6 приведена в главе «Шина данных микропроцессора 1821ВМ85».


1.2.13. Схема дешифрации.

          В предыдущих главах были рассмотрены основные блоки схемы управления и было отмечено, что МП в строго определенные моменты времени должен взаимодействовать с определенными микросхемами. Поэтому в данной схеме необходимо предусмотреть устройство, которое по сигналам от процессора, будет подключать к его шинам адреса или данных ту или иную микросхему или группу микросхем. Из этого можно заключить, что в схеме системы должен протекать некоторый процесс однозначного выбора и он организуется подачей на линии адреса А11А15 определенного кода выбора или сигнала разрешения доступа к отдельному блоку или блокам. К счастью, эта проблема является классической и она имеет простое решение. В частности можно использовать дешифратор, выполненный в виде ТТЛ устройства среднего уровня интеграции, предназначенного для преобразования двоичного кода в напряжение логического уровня, которое появляется в том выходном проводе, десятичный номер которого соответствует двоичному коду. В последствии выходной провод дешифратора подключают к входу «Выбор микросхемы» нужной микросхемы (например вывод №18 (CS) микросхемы 537РУ10).

          В качестве дешифратора будем использовать микросхему 1533ИД7. Выбор данного дешифратора обусловлен количеством выходных линий и нагрузочной способностью.

          Микросхема 1533ИД7 – высокоскоростной дешифратор, преобразующий трехразрядный код А0А2 (№13) в напряжение низкого логического уровня, появляющегося на одном из восьми выходов 07. Дешифратор имеет трехвходовый логический элемент разрешения.

          В таблице показано, что дешифрация происходит, когда на входах (№4) и (№5), напряжение низкого уровня, а на входе Е3(№6) высокого. При других логических уровнях на входах разрешения, на всех выходах имеются напряжения высокого уровня.

Е3 А2 А1 А0 0 1 2 3 4 5 6 7

В

 

В

 
В

Х

Х

Н

Н

Н

Н

Н

Н

Н

Н

Х

В

Х

Н

Н

Н

Н

Н

Н

Н

Н

Х

Х

Н

В

В

В

В

В

В

В

В

Х

Х

Х

Н

Н

Н

Н

В

В

В

В

Х

Х

Х

Н

Н

В

В

Н

Н

В

В

Х

Х

Х

Н

В

Н

В

Н

В

Н

В

В

В

В

Н

В

В

В

Н

В

В

В

Н

В

В

В

Н

В

В

В

Н

В

В

В

Н

В

В

В

Н

В

В

В

Н

          В качестве информационных сигналов будем использовать сигналы, поступающие по адресным линиям А11А13; сигналов разрешения, сигналы, поступающие по адресным линиям А14А15 (вход №4 подсоединим к корпусу).

          Более подробно рассмотрим подачу сигналов на входы CS и организацию сигналов REG1REG3; BVF.

ПЗУ:

          Сигнал на вход «Выбор микросхемы» (№20) будем подавать на адресной линии А15. Если в старшем разряде адресной шины (А15) уровень логического «0», то такой же уровень на входе №6 дешифратора. При этом ПЗУ переходит из режима «Хранение» и готово к считыванию информации, а дешифратор на всех выходных линиях имеет уровень логической «1» и все остальные элементы схемы, кроме микросхемы DDS, недоступны для микропроцессора.

          - Если в адресных линиях:

          А11А15 код 00001, то

                             CS0 – «0»

                             CS1CS7 – «1»

                             EN== «0»

И данные через двунаправленный буфер DDS будут записываться или считываться из ОЗУ (DD13)

          - A11A15 код 01001, то CS0= «1» CS1= «1»

                                                  CS3CS7= «1»

                                                  CS2= «0» EN== «1».

и микросхема DD20 готова к считыванию или записи информации

          - А11А15 код 11001, то

                   CS0CS2= «1», CS4CS7= «1»

                   CS3= «0»          EN== «0»

и данные через двунаправленный буфер DDS будут записываться в устройство В/В DD12.

          - А11А15 код 00101, то

                   CS0CS3= «1»; CS5CS7= «1»

                   CS4= «0»             EN== «0»

тогда на входе №1 DD6 CS4= «0» и при  на входе №11 DD10 REG1 и данные через двунаправленный буфер DDS проходят на выход DD10 и фиксируются.

          Аналогично формирование сигналов REG2 и REG3 для DD11 и DD15 при кодах на А11А15 10101 и 01101 соответственно.

          - А11А15 код 01101, то

                   CS0CS5= «1»; СS7= «1»

                   CS6= «0»             EN== «0»

          Когда на входе №10 DD6 CS6= «0» и при = «0» на входе №19DD16 BVF= «0»  и данные через DD16 вводятся в систему управления.


1.2.14. Цифро-аналоговый преобразователь.

          Для преобразования цифровой информации в аналоговую необходимо использовать ЦАП.

          Основной характеристикой ЦАП является разрешающая способность, определяемая числом разрядов N. Теоретически ЦАП, преобразующий N-разрядные двоичные коды, должен обеспечивать 2N различных значений выходного сигнала с разрешающей способностью (2N-1)-1.

          Из динамических параметров основными являются:

1)   время установки выходного сигнала;

2)   fmax преобразования.

В нашем случае необходимо организовать формирование 3-х аналоговых сигналов ANL1, ANL2 и ANL3, которые будут пропорциональны цифровым сигналам на выходах канала А, В, С микросхемы 580ВВ55 соответственно. Значит необходимо предусмотреть 3 цифро-аналоговых преобразователя. Свой выбор я остановил на 10 разрядном ЦАП прецизионного типа 572ПА1. Для построения полной схемы преобразователя к микросхеме 572ПА1 необходимо подключить операционный усилитель. В качестве операционного усилителя будем использовать К140УД8, имеющего схему внутренней коррекции.

                     15  U0n   +Uпит

572ПА1

 
             4              14


К1409D8

 
Uвх                                   1        3                 7                    Uвых

                                        2        4

             13


1.2.15. Дополнительные пояснения к схеме управления.

1)   Во избежание записи или считывания «ложной» информации во время включения или выключения напряжения питания в схеме устройства управления предусмотрена микросхема DD8 – четырехканальный коммутатор цифровых и аналоговых сигналов. Каждый ключ имеет свой вход и выход сигнала, а также вход разрешения прохождения сигнала EI. Канал проводимости двунаправленный. Коммутатор К561КТ3 имеет сопротивление канала 80 Ом, сопротивление входа управления 1012Ом. Открывающее напряжение на входе EI – 3В. Канал пропустит цифровые уровни с амплитудой до Uип. Время задержки распространения сигнала 10…25 мс.

Структурная схема.

                S

 
                   Вход                                                Выход


                                                           EI                        включено


          Входы:       №1, 4, 8, 11.

          Выходы:    №2, 3, 9, 10.

          EI:               №13, 5, 6, 12.

          Если микросхема 537РУ10 «питается» от аккумулятора (4,5 В) на входах , ,  - напряжение высокого уровня и ОЗУ находится в режиме хранения. Считывание или запись информации невозможно.

          После подачи напряженияUID и достижения им уровня +5 В, отключается питание от аккумулятора и происходит подача напряжения высокого уровня на входы EI микросхемы DD8. В результате этого ключ замыкается и теперь возможно прохождение сигналов управления от микропроцессора и дешифратора.

          Напряжение UID подается через транзистор VT1 (КТ3102), Включенный по схеме с общим коллектором, в эммитерной цепи которого напряжение стабилизируется диодом VD6 (КС139А), для обеспечения стабильного уровня на входах EI.

2)   В схеме управления используется микросхема DD6: логический элемент ИЛИ с двумя выходами. Эти функции реализуются с помощью микросхемы 1533ЛЛ1. Также используется микросхема DD9: логический элемент ИЛИ-НЕ с одним входом (инвертор). Эти функции реализуются с помощью микросхемы 1533ЛН1.

3)   При входном импульсном сигнале с пологими фронтом и срезом импульс на входе формирующего логического элемента также не будет прямоугольным, поскольку некоторое время ключевая схема будет находиться в усилительном режиме. Кроме того, на фронте и срезе выходного импульса будут присутствовать усиленные помехи, поступившие в «усилитель» из провода питания. Импульс с зашумленными и несформированными фронтом и срезом непригоден для переключения тактовых входов триггеров, регистров и счетчиков.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15