рефераты

рефераты

 
 
рефераты рефераты

Меню

Реферат: Управление тюнером спутникового телевидения рефераты

2.   К увеличению быстродействия перестройки частоты от fmin до fmax. Скорость перестройки зависит от fтакт процессора.

3.   К увеличению точности настройки со строго определенным шагом.

4.   К увеличению количества принимаемых сигналов звукового сопровождения.

5.   К дополнительным удобствам при эксплуатации тюнера – наличие дистанционного управления, вывод сведений на экран о реальном времени, программирование времени включения тюнера.

6.   К уменьшению масса - габаритных размеров.


2.2 Разработка конструкции блока.

Блок является основным элементом при проектировании РЭА. Он объединяет печатные узлы и другие элементы. Разработку конструкции блока можно производить исходя из базовых несущих конструкций. Но в некоторых случаях, например при проектировании бытовой аппаратуры, целесообразно разрабатывать оригинальную несущую конструкцию. Это позволяет повысить коэффициент заполнения объема, уменьшить массу и габаритные размеры изделия.

Каркас блока выполнен из алюминия АД-1 толщиной 1 мм. Кожух блока, из-за требований, предъявляемых к прочностным характеристикам конструкции, выполнен из стального листа марки СТ10 толщиной 1 мм. Передняя панель выполнена также из стального листа марки СТ10 толщиной 1 мм.

Так как стальной кожух не стоек к коррозии, применено покрытие из анилинового красителя черного цвета, что обеспечивает необходимую антикоррозийную стойкость при эксплуатации и хранении.

Для пайки применяют припой ПОС – 61.

Габаритные размеры блока в длину и ширину соответственно: 505 мм и 300 мм.

Данные размеры определяются суммарными габаритными размерами плат и зазорами между ними. Высота определяется высотой трансформатора и шириной платы индикации и составляет 55 мм.


2.3. Выбор и определение типа платы, ее технологии изготовления, класса точности, габаритных размеров, материала, толщины, шага координатной сетки.

1.   По конструкции печатные платы с жестким и гибким основанием делятся на типы:

-     односторонние

-     двусторонние

-     многослойные

Для данного изделия необходимо использовать двустороннюю печатную плату с металлизированными монтажными и переходными отверстиями. Несмотря на высокую стоимость, ДПП с металлизированными отверстиями характеризуются высокими коммутационными свойствами, повышенной прочностью соединения вывода навесного элемента с проводящим рисунком платы и позволяет уменьшить габаритные размеры платы за счет плотного монтажа навесных элементов.

Для изготовления печатной платы в соответствии с ОСТ 4.010.022 и исходя из особенностей производства выбираем комбинированный позитивный метод.

2.   В соответствии с ГОСТ 2.3751-86 для данного изделия необходимо выбрать четвертый класс точности печатной платы.

3.   Габаритные размеры печатных плат должны соответствовать ГОСТ 10317-79. Для ДПП максимальные размеры могут быть    400 х 400 мм. Габаритные размеры данной печатной платы удовлетворяют требованиям данного ГОСТа.

4.   В соответствии с требованиями ОСТ 4.077.000 выбираем материал для платы на основании стеклоткани – стеклотекстолит СФ-2-50-1,5   ГОСТ 10316-78. Толщина 1,5 мм.

5.   В соответствии с ГОСТ 2.414078 и исходя из особенностей схемы, выбираем шаг координатной сетки 1,25 мм.

6.   Способ получения рисунка – фотохимический.


2.4. Конструкторский расчет элементов печатной платы.

1.   Шаг координатной сетки – 1,25 мм.

2.   Определяем минимальную ширину печатного проводника по постоянному току:

вmin1=, где

Imax=30 мА           t=0,02 мм             jдоп=75 А/мм2

3.   Определяем минимальную ширину проводника исходя из допустимого падения напряжения на нем:

вmin2=, где

Uдоп12 В*0,05=0,6 В  l=0,5 м        r=0,0175 []

вmin2==0,022 мм.

4.   Номинальное значение диаметров монтажных отверстий:

d=dэ+êbdноê+Г,  Ddно=0,1 мм, Г=0,3 мм.

а) для микросхем

          dэ=0,5 мм   d=0,9 мм

б) для резисторов

          dэ=0,5 мм   d=0,9 мм

в) для диодов и стабилитронов

          dэ=0,5 мм   d=0,9 мм

г) для транзисторов

          dэ=0,5 мм   d=0,9 мм

д) для конденсаторов

          dэ=0,5 мм   d=0,9 мм

е) для разъема

          dэ=1 мм      d=1,4 мм

5.   Рассчитанные значения сводятся к предпочтительному ряду размеров монтажных отверстий:

0,7; 0,9; 1,1; 1,3; 1,5 мм.

Номинальное значение диаметров монтажных отверстий для разъема: d=1,5 мм.

6.   Минимальное значение диаметра металлизированного отверстия:

dminHплg, где Нпл=1,5 мм – толщина платы; g=0,25

dmin1,5*0,25=0,5 мм

7.   Диаметр контактной площадки:

D=d+Ddво+2вm+Dвво+(d2d+d2p+Dв2но)1/2

Ddво=0,5 мм;        вm=0,025 мм        Dвво=Dвно=0,05 мм

dр=0,05 мм;          dd=0,05 мм

Ddво+2 вm+Dвво+(d2d+d2p+Dв2но)1/2=0,05+0,05+0,05+(3*25*10-4)1/2=0,24

d=0,7 мм              D=0,95 мм

d=0,9 мм              D=1,15 мм

d=1,5 мм              D=1,75 мм

8.   Определение номинальной ширины проводника:

в=вMD+êDвНОê, где

вMD=0,15 мм; DвНО=0,05 мм

в=0,15+0,05=0,2 мм

9.   Расчет зазора между проводниками:

S=SMD+DвВО, где

DвВО=0,05 мм; SMD=0,15 мм

S=0,15+0,05=0,2 мм

10.       Расчет минимального расстояния для прокладки 2-х проводников между отверстиями с контактными площадками диаметрами D1 и D2.

l=+вn+S(n+1)+dl , где

n=2; dl=0,03 мм

l=1,05+0,4+0,6+0,03=2,1 мм.


2.5. Расчет параметров проводящего рисунка с учетом технологических погрешностей получения защитного рисунка.

1.   Минимальный диаметр контактной площадки:

Dmin=D1min+1,5hф+0,03

D1min=2(вм++dd+dp)

dmax1=0,9 мм

D1min=2(0,025+0,45+0,05+0,05)=1,15 мм

Dmin1=1,15+0,6=1,21

dmax2=1,5 мм

Dmin2=1,81 мм

2.   Максимальный диаметр контактной площадки:

Dmax=Dmin+(0,02…0,06)

Dmax1=1,21+0,02=1,23 мм

Dmax2=1,81+0,02=1,83 мм

3.   Минимальная ширина проводника:

вmin=в1min+1,5hф+0,03, где

в1min=0,15 мм

вmin=0,15+0,6=0,21

4.   Максимальная ширина проводника:

вmax= вmin+(0,02…0,06)

вmax=0,23 мм

5.   Минимальная ширина линии на фотошаблоне:

вмmin= вmin-(0,02…0,06)

вмmin=0,21-0,02=0,19 мм

6.   Максимальная ширина линии на фотошаблоне:

вмmax= вmin+(0,02…0,06)

вмmax=0,21+0,06=0,27 мм

7.   Минимальное расстояние между проводником и контактной площадкой:

S1min=L0-[Dmax/2+dp+ вmax/2+dl]

L0=1,25 мм

S1min=1,25-0,615-0,05-0.115-0,03=0,44 мм

8.   Минимальное расстояние между двумя контактными площадками:

S2min=L0-(Dmax+2dp)

L0=1,25 мм+0,3 мм=1,55 мм

S2min=1,25-1,23-2*0,05+0,03=0,20 мм

9.   Минимальное расстояние между проводником и контактной площадкой на фотоблоке:

S3min=L0-(Bmax+2dl)

L0=1,25 мм

S3min=1,25-0,575-0,05-0,135-0,03=0,46 мм

10.       Минимальное расстояние между проводником и контактной площадкой на фотоблоке:

S4min=L0-(Dмmax/2+dp+вмmax/2+dl)

L0=1,25 мм

S4min=1,25-0,575-0,05-0,135-0,03=0,46 мм

11.       Минимальное расстояние между двумя контактными площадками на фотоблоке:

S5min=L0-(Dмmax+2dp)

L0=1,55 мм

S5min=1,55-1,25-0,1=0,2 мм

12.       Минимальное расстояние между двумя проводниками на фотоблоке:

S6min=L0-(вмmax+2dl)

L0=1,25 мм

S6min=1,25-0,27-0,06=0,92 мм


2.6. Расчет проводников по постоянному току.

Наиболее важными электрическими свойствами печатных плат по постоянному току является нагрузочная способность проводников по току и сопротивление изоляции.

Практически сечение проводника рассчитывается по допустимому падению напряжения Uп на проводнике:

1.   Uп=           вп=0,23 мм           hф=0,02 мм

l=0,5 м                 r=0,0175         I=30 мА

Uп==57 мВ

Uп<Uзпу=0,4¸0,5 В

2.   Расчет сечения печатного проводника сигнальной цепи:

Sc  ³ ==6,6*10-4 мм

3.   Расчет сечения печатного проводника шины питания и земли:

Sпз ³ ==21,88*10-4 мм2

4.   Поверхностное сопротивление изоляции:

RS=                l3=0,96 мм            l=0,5 м

rS=5*1010 Ом

RS==9,6*107 Ом

5.   Объемное сопротивление изоляции:

RV=              rV=5*109 Ом*м

Sп=вп2=4,41*10-2 мм2              hпп=1,5 мм

RV==1,7*1014 Ом

6.   Сопротивление изоляции:

RU===9,6*107 Ом

7.   RU>103Rвх, где Rвх==10 кОм.


2.7. Расчет проводников по переменному току.

1.   Падение импульсного напряжения на длине проводника в l cм.

UL=Lпо             Lпо=1,8 ; DI=6 мА; tU=5 нс

UL=1,8 =2,16

2.   Максимальная длина проводника:

lmax<==185 cм

3.   Задержка сигнала при передаче по линии связи:

tз ==             e=5; m=1; t0=0,33 нс/м

l=0,5 м

tз=0,5*0,33=0,37 нс

4.   Взаимная индуктивность и емкость двух проводников:

                   lз             впр

                                                C11=0,09(1+e)lg(1+2впр/lз+впр2/lз2)=

                                                0,09(1+5)lg(1+2+()2)=0,1пФ/см

С1=С11l=0,3*50=5 пФ

М11=2(ln-1)=2(ln-1)=6,86 мГн/см

М1=М11l=6,86*0,5=3,43 мГн

                                      C21=

x=; f(x)=2arctg+ln(4x2+1)

x==13,04                f(x)=5,13

C21==0,047 пФ/см

С2=С12*l=2,35 пФ

М21=2=10,44 мГн/см

М2=М21*l=5,22 мГн


                                                С31=0,17e

С31=0,17*5=0,72 пФ/см

С3=С31*l=36 пФ

                                                С41=0,2e

С41=1+=1,31 пФ/см

С4=С41*l=68 пФ

5.   Между рядом расположенными проводниками существует электрическая связь через сопротивление изоляции RU, взаимную емкость С и индуктивность М, которая приводит к появлению на пассивной линии связи напряжения перекрестной помехи от активной линии. Надежная работа цифровых электронных схем будет обеспечена, если напряжение помехи не превысит помехоустойчивости логических схем

U=URU+UC+UL<UЗПУ

В состоянии лог. «1» помеха слабо влияет на срабатывание логического элемента, поэтому рассмотрим случай, когда на входе микросхемы лог. «0». При этом:

Uвх0=0,4 В            Uвых0=0,4 В          f=5*105Гц

Iвх0=0,1 мА           Iвых04 мА              Е0=2 В

Rвх0=4 кОм          Rвых0=100 Ом      

U==

==

=0,49*10-3ê6,2-j269,3ê=0,13 В<0,4 В


2.8. Оценка вибропрочности и ударопрочности.

1.   Оценка собственных частот колебаний платы:

f0=*

М=Мп+mрэ=авhr+mрэ=215*120*1,5*10-6+0,28=0,4 кг

Кa=К(a+b)1/2

К=22,37               a=1             b=g=0                   Кa=22,37

D=

f0= Гц

2.   Оценка коэффициента передачи по ускорению:

g(х, у)=

а(х, у) и ао – величины виброускорений в точке (х, у) и опорной соответственно:

g(х, у)=

e===6,37*10-3

h===0,42           K1(x)=K1(y)=1,35 из графика

g(х, у)=1,39

а(х, у)=а0g(х, у)=8g*1,39=11,13g


Оценка амплитуды виброперемещения.

1.   SB(x,y)=x0g(x,y)

x0==мм

SB=1,21*1,39=1,68 мм

2.   Определим максимальный прогиб печатной платы:

dВ=|SB(x,y)-x0|=0,47 мм

Вывод: адоп=15g>a(x,y)=11,13g

          0,003в=0,54 мм>dB=0,47 мм

Расчет ударопрочности.

1.   Частота ударного импульса:

w=           t=10-3 c       w=3140

2.   Коэффициент передачи при ударе:

Ку=2sin=2sin=0,45

=6,95 – коэффициент расстройки

3.   Ударное ускорение:

ау=Ну*Ку=15g*0,45=6,72g

4.   Ударное перемещение:

мм

Вывод:       адоп=35g>ay=6,72g

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15