рефераты

рефераты

 
 
рефераты рефераты

Меню

Реферат: Модернизация управляющего блока тюнера рефераты

Устройство ввода-вывода.

Программное устройство ввода-вывода параллельной информации, применяется в качестве элемента ввода-вывода общего назначения, сопрягающего различные типы периферийных устройств с магистралью данных систем обработки информации.

Обмен информацией между магистралью данных систем и микросхемой 580ВВ85 осуществляется через 8 разрядный двунаправленный трехстабильный канал данных. Для связи с периферийными устройствами используется 24 линии В/В, сгруппированные в три 8 разрядных канала ВА, ВВ, ВС, направление передачи информации и режимы работы которых определяются программным способом.

         

  1-4; 37-40 – ВА3 – ВА0; ВА7ВА4 – входы/выходы – информационный канал А.

  1017 – ВС7ВС0 – входы/выходы – информационный         канал С.

  1825 – ВВ0ВВ7 – входы/выходы – информационный      канал В.

   5 -  - вход – чтение.

   6 -  - вход – выбор кристалла.

   7 – GND - - - общий.

 8,9 – А0, А1 – вход – младший разряд адреса

 26 – Uсс – питание.

 35 – SR – вход – установка исходного состояния.

 36 -  - вход – запись.

 Микросхема может функционировать в 3-х основных режимах.

В режиме 0 обеспечивается возможность синхронной программно управляемой передачи данных через 2 независимых 8 разрядных канала ВА, ВВ и два 4 разрядных канала ВС.

Изм. Лист № Докум. Подп. Дата Лист
18

В режиме 1 обеспечивается возможность ввода или вывода информации в/или из периферийного устройства через 2 независимых 8 разрядных канала ВА, ВВ по сигналам квитирования.

При этом линии канала С используются для приема и выдачи сигналов управления обменом.

В режиме 2 обеспечивается возможность обмена информацией  с периферийными устройствами через двунаправленную 8 разрядную шину ВА по сигналам квитирования. Для передачи и приема сигналов управления обменом используются 5 линий канала ВС.

Выбор соответствующего канала и направление передачи информации через канал определяется сигналами А0, А1 и сигналами , , . Режим работы каждого из каналов ВА, ВВ, ВС определяется содержимым регистра управляющего слова (РУС). Производя запись управляющего слова в РУС можно перевести микросхему в один из 3-х режимов работы: режим 0-простой ввод/вывод; режим 1-стробируемый ввод/вывод; режим 2-двунапрвленный канал. При подаче сигнала SR РУС устанавливается в состояние, при котором все каналы настраиваются на работу в режиме 0 для ввода информации. Режим работы каналов можно изменить как в начале, так и в процессе выполнения работающей программы, что позволяет обслуживать различные периферийные устройства в определенном порядке одной микросхемой. При изменении режима работы любого канала все входные и выходные регистры каналов и триггеры состояния сбрасываются.

Изм. Лист № Докум. Подп. Дата Лист
19

Фиксирующая схема.

          Как уже отмечалось выше необходимо подавать сигналы в блок индикации № канала (2 индикатора) в строго определенные моменты времени. Для этого необходимо предусмотреть устройство, которое по сигналам от процессора, будет пропускать информацию на один из индикаторов блока индикации. В качестве элементов фиксирующей схемы будем использовать 2 регистра типа 1533UP23.

          Регистр, аналогичный UP22, нос 8 тактируемыми триггерами. Регистр принимает и отображает информацию синхронно с положительным перепадом на тактовом входе.

          Таким образом, подавая тактирующие сигналы на вход С (№11) регистра 1533UP23, мы разрешаем прохождение сигналов на соответствующий индикатор в строго определенные моменты времени.

Согласующая схема.

Для организации вывода информации в остальные блоки тюнера будем использовать регистр 1533UP23, тактируемый сигналами от микропроцессора.

Для приема информации в устройство управления будем использовать шинный формирователь 1533АП6. Как известно шинный формирователь обеспечивает передачу информации в обоих направлениях. Для обеспечения только ввода данных вывод №1 соединим с корпусом. Если появится необходимость в выводе большего количества информации из устройства управления, то с помощью микросхемы 1533АП6 можно будет решить данную проблему.

Изм. Лист № Докум. Подп. Дата Лист
20

Схема дешифрации.

          В предыдущих главах были рассмотрены основные блоки схемы управления и было отмечено, что МП в строго определенные моменты времени должен взаимодействовать с определенными микросхемами. Поэтому в данной схеме необходимо предусмотреть устройство, которое по сигналам от процессора, будет подключать к его шинам адреса или данных ту или иную микросхему или группу микросхем. Из этого можно заключить, что в схеме системы должен протекать некоторый процесс однозначного выбора и он организуется подачей на линии адреса А11А15 определенного кода выбора или сигнала разрешения доступа к отдельному блоку или блокам. К счастью, эта проблема является классической и она имеет простое решение. В частности можно использовать дешифратор, выполненный в виде ТТЛ устройства среднего уровня интеграции, предназначенного для преобразования двоичного кода в напряжение логического уровня, которое появляется в том выходном проводе, десятичный номер которого соответствует двоичному коду. В последствии выходной провод дешифратора подключают к входу «Выбор микросхемы» нужной микросхемы (например вывод №18 (CS) микросхемы 537РУ10).

     Микросхема 1533ИД7 – высокоскоростной дешифратор, преобразующий трехразрядный код А0А2 (№13) в напряжение низкого логического уровня, появляющегося на одном из восьми выходов 07. Дешифратор имеет трехвходовый логический элемент разрешения.

      Дешифрация происходит, когда на входах (№4) и (№5), напряжение низкого уровня, а на входе Е3(№6) высокого. При других логических уровнях на входах разрешения, на всех выходах имеются напряжения высокого уровня.

      В качестве информационных сигналов будем использовать сигналы, поступающие по адресным линиям А11А13; сигналов разрешения, сигналы, поступающие по адресным линиям А14А15 (вход №4 подсоединим к корпусу).

Цифро-аналоговый преобразователь.

                Для преобразования цифровой информации в аналоговую необходимо использовать ЦАП.

Изм. Лист № Докум. Подп. Дата Лист
21

Основной характеристикой ЦАП является разрешающая способность, определяемая числом разрядов N. Теоретически ЦАП, преобразующий N-разрядные двоичные коды, должен обеспечивать 2N различных значений выходного сигнала с разрешающей способностью (2N-1)-1.

В нашем случае необходимо организовать формирование 3-х аналоговых сигналов ANL1, ANL2 и ANL3, которые будут пропорциональны цифровым сигналам на выходах канала А, В, С микросхемы 580ВВ55 соответственно. Значит необходимо предусмотреть 3 цифро-аналоговых преобразователя. Свой выбор я остановил на 10 разрядном ЦАП прецизионного типа 572ПА1. Для построения полной схемы преобразователя к микросхеме 572ПА1 необходимо подключить операционный усилитель. В качестве операционного усилителя будем использовать К140УД8, имеющего схему внутренней коррекции.

Дополнительные пояснения к схеме управления.

Во избежание записи или считывания «ложной» информации во время включения или выключения напряжения питания в схеме устройства управления предусмотрена микросхема DD8 – четырехканальный коммутатор цифровых и аналоговых сигналов.

Прежде чем последовательность коротких импульсов подавать на вход SID микропроцессора, необходимо обеспечить хорошую стабильность длительности данных импульсов, т.к. на входе элемента Шмидта все они будут иметь разную длительность. В составе серий ТТЛ имеется несколько аналого-импульсных схем – ждущих мультивибраторов. Они позволяют расширить длительность коротких импульсов, сформировать импульсы нужной длительности с хорошей стабильностью по длительности.

Изм. Лист № Докум. Подп. Дата Лист
22

2.3. Выбор и обоснование применения элементной базы.

Для создания разрабатываемого устройства согласно техническому заданию необходимо применить комплектующие отечественного производства и максимально использовать стандартные компоненты и изделия. Исходя из этого выбор элементной базы будет следующим.

Резисторы, конденсаторы, диоды и другие дискретные компоненты.

Для применения в разрабатываемом устройстве были выбраны резисторы марки МЛТ мощностью 0,125 Вт. Выбор был сделан, исходя из соображений достаточной надежности, точности и низкой общей стоимости прибора. Резисторы марки МЛТ в достаточной степени удовлетворяют вышеприведенным требованиям и являются одной из наиболее распространенных марок резисторов, что сыграло решающую роль при их выборе. Другие дискретные компоненты выбраны исходя из аналогичных соображений.

Интегральные микросхемы.

Ввиду большого разнообразия серий микросхем, пригодных для использования в разрабатываемом устройстве и значительного количества параметров микросхем, их выбор аналогично выбору дискретных компонентов затруднителен. Поэтому выбор микросхем будет произведен по их параметрам.

Справочные данные.

512 ВИ1

Un=5 В10%.

Iпотр, мА.

статический режим 0,1

динамический режим при

fmax тактовых импульсов 4

fmin                                    0,1

Выходной ток высокого (низкого) уровня при Uвых Н=4,1 В, (UвыхL=0,4 В), мА – 1,01,6.

Входной ток, мкА                1.

1821ВМ85

         

Допустимые предельные значения:

Температура окружающей среды - -10С.

Направление на всех выводах по отношению к корпусу –    -0,57 В.

Мощность рассеивания – 1,5 Вт.

Статические параметры в диапазоне температур -10С.

Изм. Лист № Докум. Подп. Дата Лист
23

 3. КОНСТРУКТОРСКО-ТЕХНОЛОГИЧЕСКИЙ РАЗДЕЛ


3.1. Выбор и определение типа платы, ее технологии изготовления, класса точности, габаритных размеров, материала, толщины, шага координатной сетки.

   1. По конструкции печатные платы с жестким и гибким основанием делятся на типы:

односторонние

двусторонние

многослойные

Для данного изделия необходимо использовать двустороннюю печатную плату с металлизированными монтажными и переходными отверстиями. Несмотря на высокую стоимость, ДПП с металлизированными отверстиями характеризуются высокими коммутационными свойствами, повышенной прочностью соединения вывода навесного элемента с проводящим рисунком платы и позволяет уменьшить габаритные размеры платы за счет плотного монтажа навесных элементов.

Для изготовления печатной платы в соответствии с ГОСТ 4.010.022 и исходя из особенностей производства выбираем комбинированный позитивный метод, т.к. по сравнению с остальными методами он обладает лучшим качеством изготовления, достаточно хорошими характеристиками, и есть возможность реализации металлизированных отверстий.

   2. В соответствии с ГОСТ 2.3751-86 для данного изделия необходимо выбрать четвертый класс точности печатной платы.

   3. Габаритные размеры печатных плат должны соответствовать ГОСТ 10317-79. Для ДПП максимальные размеры могут быть    400 х 400 мм. Габаритные размеры данной печатной платы удовлетворяют требованиям данного ГОСТа.

   4. В соответствии с требованиями ГОСТ 4.077.000 выбираем материал для платы на основании стеклоткани – стеклотекстолит СФ-2-50-1,5   ГОСТ 10316-78. Толщина 1,5 мм. Т.к печатные платы из эпоксидного стеклотекстолита характеризуются меньшей деформацией, чем печатные платы из фенольного и эпоксидного гетинакса. В качестве фольги, используемой для     фольгирования диэлектрического основания будет использована медная фольга т. к алюминиевая фольга уступает медной из-за плохой паяемости, а никелевая - из-за высокой стоимости.

   5. В соответствии с ГОСТ 2.414078 и исходя из особенностей схемы, выбираем шаг координатной сетки 1,25 мм.

Способ получения рисунка – фотохимический.

Изм. Лист № Докум. Подп. Дата Лист
31
3.2. Описание технологии производства.

Производство ПП характеризуется большим числом различных механических, фотохимических и химических операций. При производстве ПП можно выделить типовые операции, разработка и осуществление которых производится специалистами различных направлений.

Для изготовления ПП был выбран комбинированный позитивный метод.


 3.2.1. Резка заготовок.

Фольгированные диэлектрики выпускаются размерами 1000-1200 мм, поэтому первой операцией практически любого технологического процесса является резка заготовок. Для резки фольгированных диэлектриков используют роликовые  многоножевые прецизионные ножницы. Скорость резания плавно регулируется в пределах 2-13,5 м/мин. Точность резания ±1,0 мм. Для удаления пыли, образующейся при резании заготовки, ножницы оборудованы пылесосом. В данном технологическом процессе будем применять многоножевые роликовые ножницы при скорости резания 5 м/мин.

Из листов фольгированного диэлектрика многоножевыми роликовыми ножницами нарезается заготовки требуемых размеров с припуском на технологическое поле по 10 мм с каждой стороны. Далее с торцов заготовки необходимо снять напильником заусенцы во избежание повреждения рук во время технологического процесса. Качество снятия заусенцев определяется визуальным контролем.

Резка заготовок не должна вызывать расслаивания диэлектрического основания, образования трещин, сколов, а также царапин на поверхности заготовок.

3.2.2. Образование базовых отверстий.

Базовые отверстия необходимы для фиксации платы во время технологического процесса. Сверление отверстий является разновидностью механической обработки. Это одна из самых трудоемких и важных операций. При выборе сверлильного оборудования необходимо учитывать следующие основные особенности: изготовление нескольких тысяч отверстий в смену, необходимость обеспечения перпендикулярных отверстий поверхности платы, обработка плат без заусенцев. При сверлении важнейшими характеристиками операции являются: конструкция сверлильного станка, геометрия сверла, скорость резания и скорость осевой подачи.

Для правильной фиксации сверла используются специальные высокоточные кондукторы.

Изм. Лист № Докум. Подп. Дата Лист
32

Кроме того, необходимо обеспечить моментальное удаление стружки из зоны сверления. Как известно стеклотекстолит является высокоабразивным материалом, поэтому необходимо применять твердосплавные сверла. Применение сверл из твердого сплава позволяет значительно повысить производительность труда при сверлении и улучшить чистоту обработки отверстий. В большинстве случаев заготовки сверлят в пакете, высота пакета до 6 мм.

В данном технологическом процессе, заготовки сверлят в пакете на сверлильном станке С-106. Скорость вращения сверла при этом должна быть в пределах 15 000-20 000 об/мин, а осевая скорость подачи сверла - 5-10 мм/мин Заготовки собираются в кондукторе, закрепляются и на сверлильном станке просверливаются базовые отверстия.

Качество просверленных отверстий определяется визуально.

3.2.3. Подготовка поверхности заготовок.

От состояния поверхности фольги и диэлектрика во многом определяется адгезия наносимых впоследствии покрытий. Качество подготовки поверхности имеет важное значение, как при нанесении фоторезиста, так и при осаждении металла.

Широко используют химические и механические способы подготовки поверхности или их сочетание. Консервирующие покрытия легко снимаются органическим растворителем, с последующей промывкой в воде и сушкой. Окисные пленки, пылевые и органические загрязнения удаляются последовательной промывкой в органических растворителях (ксилоле, бензоле, хладоне) и водных растворах фосфатов, соды, едкого натра.

Удаление оксидного слоя толщиной не менее 0,5 мкм производят механической очисткой крацевальными щетками или абразивными валками. Недостаток этого способа - быстрое зажиривание очищающих валков, а затем, и очищающей поверхности. Часто для удаления оксидной пленки применяют гидроабразивную обработку. Высокое качество зачистки получают при обработке распыленной абразивной пульпой. Гидроабразивная обработка удаляет с фольги заусенцы, образующиеся после сверления, и очищает внутренние медные торцы контактных площадок в отверстиях многосторонних печатных плат от эпоксидной смолы.

Высокое качество очистки получают при сочетании гидроабразивной обработки с использованием водной суспензии и крацевания. На этом принципе работают установки для зачистки боковых поверхностей заготовок и отверстий печатных плат нейлоновыми щетками и пемзовой суспензией.

Обработка поверхности производится вращающимися латунными щетками в струе технологического раствора. Установка может обрабатывать заготовки максимальным размером 500х500 мм при их толщине 0,1-3,0 мм, частота вращения щеток 1200 об/мин, усилие поджатия плат к щеткам 147 Н.

Химическое удаление оксидной пленки (декапирование) наиболее эффективно осуществляется в 10 %-ном растворе соляной кислоты.

Изм. Лист № Докум. Подп. Дата Лист
33

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10