рефераты

рефераты

 
 
рефераты рефераты

Меню

Реферат: Математическое моделирование в сейсморазведке рефераты

Такие модели используются, как правило, при решении стратиграфи­ческих задач, в которых объектами исследования могут быть зоны выклинивания и фациального замещения, залежи углеводородов и др. При этом моделируемый интервал должен совпадать с объектом исследований. Желательно, чтобы в пределах моделируемого профиля имелось две-три опорные точки, в которых по данным глубоких скважин заданы одно­мерные модели. Когда на профиле или вблизи него нет глубоких скважин, то в принципе возможно построение достаточно детальных моделей только по данным сейсморазведки.

Выбор комбинированного типа моделей для описания способов построе­ния самых разнообразных в целевом отношении двумерных моделей оправдан тем, что:

·     во-первых, такая модель получила наибольшее рас­пространение в практике моделирования и,

·     во-вторых, излагаемые ниже способы пригодны как для построения толстослоистых моделей (используемых при решении прямых и обратных кинематических задач), так и для построения тонкослоистых моделей по всему разрезу (используемых при решении прямых и обратных динамических задач).

Однако на практике последние строятся очень редко из-за край­ней трудоемкости построения таких моделей в двумерном варианте. Поэтому тонкими слоями задается ограниченный интервал, т. е. и в этом случае приходится иметь дело с комбинированной моделью.

При построении покрывающей толстослоистой части комбинированной модели, как правило, используется традиционный сейсмический разрез. При этом желаемым является условие: форма границ и значения скоростей в пластах должны быть такими, чтобы сохранялись кинематические годо­графы основных отраженных волн, а границам приписаны те коэффициенты отражения, которые получаются при расчетах с учетом их тонкослоистой структуры при определенной форме волны. В некоторых случаях по­крывающая толща может задаваться в виде одного или двух пластов с эффективными параметрами или с искусственно подбираемыми скоростями и толщинами, при которых совпадали бы времена отражений на синте­тическом и реальном временных разрезах в пределах моделируемого интер­вала

§ 2.2.1.   Построение модели по данным бурения

При отсутствии данных сейсморазведки, т. е. в задачах предварительной оценки сейсмических аномалий, обусловленных особенностями геологического строения разреза (нефтегазоносность, фациальные замещения, выклинивания и др.), двумерные модели наиболее просто строятся путем линейной интерполяции свойств среды и положения границ в области между разведочными скважинами.

Метод линейной интерполяции достаточно точен в том случае, если период изменений используемых для моделирования геолого-геофизических характеристик больше расстояния между скважинами. В подавляющем большинстве случаев это условие не выполняется, и линейная интерполяция является лишь наиболее простым решением из множества вариантов увязки одномерных моделей по соседним скважинам.

Лекция 3

§ 2.2.2.   Построение моделей по данным бурения и сейсморазведки

Наличие сейсмических временных разрезов позволяет отказаться от линейной интерполяции и осуществить построение модели с помощью следующих приемов:

1.    Производится тщательная стратиграфическая привязка отраженных волн в точках глубоких скважин, причем наиболее надежная привязка осуществляется по временному разрезу, в который "врезаны" диаграммы скорости по АК в масштабе двойного времени и синтетические сейсмограммы.

2.    На сейсмическом разрезе границы путем парал­лельного переноса точно совмещаются в точках расположения скважин с теми геологическими границами, которые определены в результате стра­тиграфической привязки (см. п. 1) как доминирующие при формировании отраженной волны. Если по какой-либо скважине получается невязка, то она "разбрасывается" по линейному закону в глубины сейсмической грани­цы между скважинами.

3.    На полученный в результате такой коррекции сейсмический разрез, который можно назвать базисной толстослоистой моделью, в точках рас­положения скважин наносятся тонкослоистые модели, соответствующие моделируемому интервалу. В пределах моделируемого интервала про­водятся границы отдельных литологически однородных тонких слоев. При этом в зависимости от предполагаемой степени сложности двумерной модели подходы к ее построению могут быть различными. В зонах выдер­жанной корреляции сейсмических данных, которые, как правило, соответ­ствуют согласному или близкому к нему залеганию пород, эти границы проводятся так, чтобы они соединяли отметки по скважинам и были парал­лельны сейсмическим границам между скважинами. Участки изменений сейсмических данных (схождение осей синфазности, изменения формы и интенсивностей колебаний, разрывы в корреляции) тщательно анализи­руются и с учетом данных по скважинам задаются возможные модели изменений мощности слоев, литолого-фациальных замещений, появления углеводородов и др. Нередки случаи, когда в пределах одного модели­руемого интервала встречаются участки различной сложности.

4.    Задаются упругие параметры (скорости и плотности) во всех слоях модели, при этом в точках между скважинами эти параметры находятся путем линейной интерполяции значений, полученных ранее в процессе формирования одномерных моделей в точках расположения скважин.

§ 2.2.3.   Построение моделей по данным сейсморазведки

Если на профиле нет скважин, то модель может быть построена только по сейсмическим дан­ным. В этом случае целесообразно применять такие процедуры.

1.    На основе кинематической интерпретации временного разреза строит­ся базисная толстослоистая модель. Используемые при этом средние и плас­товые скорости берутся из данных скоростного анализа, а в условиях Волго-Уральской провинции – чаще из интерполированных или экстрапо­лированных сейсмокаротажных данных.

2.    Интервал временного разреза, соответствующий моделируемому объекту, преобразуется во временной разрез волновых сопротивлений по методике псевдоакустического каротажа (ПАК).

3.    В ряде точек профиля строятся одномерные модели волновых сопро­тивлений. Затем от волновых сопротивлений с использованием формулы s =аVb, где s – плотность, V – скорость, переходят к оцен­кам скорости и плотности. Полученные таким способом одномерные мо­дели скорости целесообразно проверять на соответствие со значениями пластовых скоростей, взятыми из интерполированных или экстраполиро­ванных сейсмокаротажных данных.

4.    Одномерные тонкослоистые модели наносятся на базисную толсто-слоистую модель, после чего, так же как и в предыдущем параграфе, строится комбинированная двумерная модель.

Необходимо отметить, что из-за использования только сейсмических данных, имеющих ограниченный частотный диапазон, тонкослоистую часть комбинированной модели следует рассматривать как эффективную сейсмическую модель.

Если полученные по описанным выше методикам двумерные модели предполагается использовать для интерпретации в итеративном режиме, то их целесообразно называть моделями нулевого приближения (моделями 0-приближения).

§ 2.2.4.   Влияние нефтегазонасыщенности на упругие свойства пород

Сведения об изменении упругих свойств (скорости и плотности) пород-коллекторов в зависимости от типа насыщающего флюида можно получить прямым измерением в скважинах, расположенных в контуре залежи и за контуром, изучением керна при различном его насыщении, путем теоретических расчетов.

Прямые измерения в скважинах с помощью сейсмического просвечи­вания и СК выполнены в ограниченном объеме и полученные результаты не всегда достаточно точны. Обобщение данных показывает, что в нефтенасыщенных песчаных коллекто­рах при глубинах 1500–3000 м и средней пористости 20% скорость продоль­ных волн уменьшается на 6–12%, в газонасыщенных коллекторах – на 15–30% по сравнению с водонасыщенным коллектором.

При измерениях на ультразвуковых частотах (АК) величина различия скоростей, обусловленная водо- и нефтегазонасыщенностью пород, меньше, чем на сейсмических частотах. Поэтому использование данных об уменьшении скоростей при нефтегазонасыщении, полученных на ультразвуковых частотах (в скважинах или на образцах керна), для модельных расчетов в сейсмическом диапазоне частот возможно лишь после их коррекции. Удвоение величин понижения скорости будет, по-видимому, вполне допустимым. Данных об изменении плотности при различном насыщении коллектора, которые были бы получены путем прямых измерений в скважинах, пока не имеется.

При отсутствии данных прямых измерений на керне или в скважине (или если эти данные недостаточно надежны) влияние нефтегазонасыщения на скорость и плотность может быть оценено теоретически, с помощью формул из теории распространения упругих волн в пористых средах. Для определения скорости продольных волн в сейсмическом диапазоне частот используется уравнение

,                                                                                                            (2.1)

где Uп и sп – параметры, зависящие соответственно от упругости и плот­ности флюида; Uск и sск – параметры, характеризующие упругость и плотность скелета (остова) породы.

Значения U и s следующим образом выражаются через свойства твердо­го материала породы и насыщающего ее флюида:

1)  sск = sтв (1 – Kп), где sтв – плотность материала, слагающего твердую фазу породы, Kп – пористость;

2)  sп = sф Kп, где sф – плотность флюида, т. е. плотность воды, нефти, газа или их смеси;

3)  , где bск – сжимаемость скелета (относительное изменение объема скелета при всестороннем упругом сжатии породы), Gск – модуль сдвига скелета;

4) 

где bтв – сжимаемость материала, слагающего скелет породы, bф сжимаемость флюида, величины bтв и bск связаны соотношением bск = bтв + Kпbп (bп – сжимаемость порового пространства).

При использовании формулы (2.1) основная трудность заключается в выборе величин bск и Gск.

Для приближенных расчетов можно использовать уравнение среднего времени (уравнение Уилли)

,                                                                                                           (2.2)

где Vп – скорость в коллекторе, заполненном флюидом; Vск – скорость в скелете; Vф скорость во флюиде, Kп коэффициент пористости. Формула (2.2) справедлива для хорошо сцементированных пород. Величину плотности можно оценить по уравнению

sп = sск (1 – Kп) + sфKп,                                                                                                 (2.3)

где sп – плотность коллектора, заполненного флюидом, sск – плотность скелета, sф – плотность флюида.

Если поры заполнены несколькими компонентами, например газ–вода, нефть–вода и т. д., то имеет место уравнение

sп = sск (1 – Kп) + sфKп + (sв – sф)SвKп,

где sв – плотность воды, Sв – коэффициент водонасыщенности.

Глава 3.  Методика интерпретации на основе итеративного моделирования

Раздел 3.1.  Особенности получения и обработки сейсмических данных, интерпретируемых на основе моделирования

Главное требование, предъявляемое к данным сейсмических наблюдений, которые интерпретируются с помощью итеративного моделирования, состоит в повышенном отношении сигнал/помеха. Опыт сейсмомоделирования показывает, что нижний предел отношения энергии сигнала к энергии помехи, равный 10 – 15, является достаточным для того, чтобы в процессе итератив­ного подбора параметров модели достичь достаточно высокую степень сходства СВР и реального временного разреза (РВР). Это предельное значение установлено на основе тесто­вого моделирования и сопоставления СВР и РВР по нор­мированной функции взаимной корреляции (НФВК) и значений отношения сигнал/помеха на РВР по одинаковым фрагментам временных разрезов. На рис. 4 показан пример такого сопоставления по профилю 39 Северо-Маркинской площади, из которого видно, что сходство СВР и РВР до 0,8 и выше удавалось получить только на участках, где отношение сигнал/по­меха на РВР достигало 10 – 15 и выше.

Важным является также требование иметь на реальных временных разрезах достаточно высокую временную разрешенность отражений. При повышении разрешенности появляется возможность не только более де­тально, т.е. в более узких временных окнах, производить сравнение СВР и РВР и последующую коррекцию модели, но и получать более детальные псевдоакустические разрезы, необходимые для построения модели 0-приближения.

Лекция 4

Достижение подобного качества РВР естественно накладывает более жесткие требования на методику полевых наблюдений и последующую обработку сейсмических данных.

§ 3.1.1.   Методика полевых наблюдений

Как известно, требования повышения отношения сигнал/помеха и увеличения разрешенности записи в какой-то мере противоречивы. Поэтому на практике важно определить, какое из этих требований является доминирующим при изучении того или иного геологического объекта. Например, при изучении рифогенных построек, грабенообразных прогибов и др. прежде всего нужно обеспечить высокое отношение сигнал/помеха, а при выявлении зон выклинивания и страти­графического несогласия, первостепенным становится требование высокой разрешенности сейсмичес­кой записи.

На поисковом этапе исследований, в целях выявления рифогенных образований, грабенообразных прогибов, выступов кристаллического фундамента методика полевых работ может быть близка к производственной или отличаться от нее некоторым увеличением мощности интерференционных систем при возбуждении и приеме. Основные элементы такой методики следующие:

1)  плотность сети профилей 1,5–2,0 пог. км на 1 км2;

2)  схема наблюдения – в основном центральная;

3)  кратность перекрытия 12 или 24;

4)  максимальное расстояние взрыв – прибор Хmax = 1700–2500 м;

5)  вы­нос 25–200 м;

6)  расстояние между каналами 40–50 м;

7)  группирование сейсмоприемников до 36 на канал, причем расположение приемников в одну или две линии на базе не более 50 м;

8)  возбуждение – взрывы в одиночных скважинах с опти­мальной глубины или из группы мелких (4–5 м) скважин на базе не более 40–50 м.

При детальных исследованиях требования к методике полевых наблюде­ний повышаются и сводятся к следующему.

1)  плотность профилей должна быть не менее 3 пог. км на 1 км2, причем при детализации, например, грабенообразных прогибов большую часть профилей следует ориентировать вкрест прогиба с расстоянием между ними не более 500 м;

2)  в целях повышения пространственной разрешенности расстояние между каналами не должно превышать 25–30 м;

3)  группирование сейсмоприемников увеличивается до 48–60 элементов на канал, причем эти элементы располагаются по площади в виде 4–5 парал­лельных ниток; база группы должна быть не более 50 м.

§ 3.1.2.   Методика цифровой обработки

Независимо от содержания решаемой геологической задачи методика обработки должна предусматривать полу­чение временных разрезов с сохранением истинных амплитуд, с высокой разрешенностью отражений, с высоким соотношением сигнал/помеха, а также обеспечивать возможность высокоточного определения интерваль­ных скоростей.

Выполнение указанных требований достигается при использовании усложненного графа обработки, содержащего следую­щие процедуры:

1)     демультиплексация цифровых записей (DMXT);

2)     редакция (REDX);

3)     коррекция амплитуд за геометрическое расхож­дение и поглощение (RAMP);

4)     вычитание среднескоростных волн-по­мех (RECON);

5)     минимально-фазовая деконволюция исходных записей (DECVTX);

6)     широкополос­ная фильтрация исходных записей (FILVTX);

7)     коррекция амплитуд за неидентичность условий возбуждения и приема (NORM);

8)     коррекция статических поправок (SUMLAK);

9)     коррекция кинематических поправок (сканирование или вертикальные спектры, KINVC);

10)   автоматическая коррекция статических поправок (PAKS);

11)   накапливание по ОГТ (SUMLC);

12)   погоризонтный анализ скоростей (горизонтальные спектры скоростей, HORSP);

13)   неза­висимая потрассовая коррекция остаточных фазовых сдвигов в несколь­ких временных окнах (WINCOR);

14)   когерентная фильтрация (AMCOD);

15)   нуль-фазовая деконволюция по раз­резу (ZEDEC);

16)   широкополосная фильтрация по раз­резу (FILVTX);

17)   когерентная фильтрация (AMCOD);

18)   ми­грация (MIGFK);

19)   псевдоакустический каротаж (РАК).

Раздел 3.2.  Выбор способа решения прямой
динамической задачи

При использовании математического моделирования для целей интер­претации сейсмических данных возникает вопрос о выборе способа вычисления теоретического волнового поля. В последнее время для двумерного моделирования получили распространение способы, осно­ванные на лучевом приближении, и более точные способы, базирующиеся на решении дифракционного уравнения Кирхгофа или волнового уравнения в конечных разностях. Выбор способа является, прежде всего, вопро­сом методическим. Однако нельзя забывать и о стоимостной стороне дела, поскольку затраты машинного времени при вычислениях по точным спо­собам, например по алгоритму Трорея – Хилтермана, для некоторых, даже не очень сложных моделей, могут быть на один-два порядка выше, чем при вычислениях в лучевом приближении. Особенно остро вопрос о выборе способа вычислений стоит при использовании моделирования в итеративном режиме, когда предполагается многократное вычисление СВР.

Страницы: 1, 2, 3, 4, 5