рефераты

рефераты

 
 
рефераты рефераты

Меню

Реферат: Керамзит рефераты

Высота обжиговой печи 10 м, внутренний диаметр в свету 2,5 м. За исключением затвора и шлюза подвиж­ных деталей печь не имеет. Отработанные дымовые газы из печи поступают в сушильный барабан и после выхо­да из него обеспыливаются в циклонах.

В противоположность классическому способу произ­водства керамзита во вращающихся печах циркуляци­онный способ позволяет пускать и останавливать всю установку в любое время без опасности для печи и футе­ровки, а также без больших теплопотерь. На растопку полностью остывшей установки требуется 60 мин, а час­тично остывшей— 15 мин.

Управление всей установкой автоматизировано. Про­должительность загрузки и разгрузки печи контролируется реле времени. Изменение продолжительности или температуры обжига вызывает изменение насыпной плот­ности обжигаемого материала и наоборот. Зона обжига контролируется телевизионной камерой, а работа печи регулируется с пульта управления. Печь в настоящее время работает на легком моторном масле, но может также работать на природном газе и мазуте. Расход теп­лоты на обжиг 1 кг керамзита в фонтанирующем слое составляет всего 3990 кДж, а расход электроэнергии 15 кВт/т. Выпускаемый керамзитовый гравий с насып­ной плотностью 500 кг/м3 характеризуется повышенной прочностью и используется для приготовления высоко-прочного керамзитобетона при изготовлении напряжен­но-армированных конструкций.

Схема производства керамзитового гравия с обжигом по циркуляционному способу показана на рис. 4

Рис.4  Технологическая схе­ма производства керамзитово­го гравия по циркуляционному способу

1 — многоковшовый экскаватор; 2 — валковая дробилка; 3 — ящичный подаватель (100 м3); 4 — ударно-от­ражательная  дисковая мельница; 5 — тарельчатый  гранулятор;   6 — шнек для отвода пыли; 7 — цик­лонный пылеулавливатель; 8 — су­шильный барабан; 9 — ковшовый элеватор;   10 — запасной бункер (5 м3),  11 —загрузочный  шлюз;

12 — печь с фонтанирующим слоем.


Вспучивание глинистого сырья на керамзит вибрационным методом

Новизна метода, названного вибрационным, состоит в применении для обжига керамзитового гравия специ­альной комбинированной установки, выполняющей сле­дующие технологические функции: сушку гранулирован­ного материала, предварительный его подогрев, вспучивание и охлаждение обожженного продукта.

Существенная особенность вибрационного способа из­готовления керамзитового гравия—приготовление гра­нулированного глинистого сырца шаровидной формы и примерно одинакового размера, что легко достигается на тарельчатом грануляторе.

Технологический процесс изготовления керамзитово­го гравия по вибрационному способу характеризуется следующей последовательностью. Исходная глина в при­родном состоянии или после ее подсушки до 15%-ной влажности измельчается в порошок с максимальным размером зерен около 0,2 мм и подается в тарельчатый гранулятор, где при добавке 2—4 % воды формуются шаровидной формы гранулы примерно одинакового размера. Для лучшего склеивания порошкообразного ма­териала применяют специальную химическую добавку.

Одинаковый размер гранул при формовании достига­ется правильно отрегулированным положением тарелки, скоростью ее вращения и дозированием воды.

Вибрационная установка работает по следующей схе­ме. Полученный на тарельчатом грануляторе однородный по размеру зерен материал по загрузочной трубе пода­ется в сушильную камеру установки (рис. 5), откуда под действием силы тяжести поток материала поступа­ет в шахту предварительного нагрева. В шахте проис­ходит теплообмен между материалом и восходящими по­токами топочных газов, поступающих из камеры го­рения.

Рис.5 Установка для произ­водства керамзита по вибраци­онному методу (ФРГ)

1—загрузка; 2 — шахта для подо­грева; 3 — вибростол;4— выгрузка

Установку для вспучивания загружают через загру­зочный желоб, работу кото­рого регулируют с помощью электромагнитных импульсов

 Гранулированный мате­риал проходит горизонталь­ную область зоны вспучивания в течение  примерно 1 мин. Зона обогревается не­посредственно c помощью двух пар форсунок,  работа­ющих на жидком топли­ве. Температура в зоне вспучивания поддерживает­ся на уровне около 1100°С. Вибрирующая поверхность транспортера на качающей­ся рамес воздушным охлаждением  защищена от воздействия высоких температур огнеупорной футеровкой. Материал движется по инерционному столу спокойным потоком.

 Горячие, вспученные зерна скатываются на охлаждающий желоб.

Достоинством  установки       является то, что она объеди­няет в одной конструкции устройства для сушки, подогрева, вспучивания и охлаж­дения. Это делает ее весьма энергетически экономичной. Расход теплоты на 1 кг керамзита составляет около 2940 кДж, а электроэнергии—около 14,5 кВт-ч на 1 т. Конструктивные размеры печи производительностью 50 т керамзита в сутки следующие: площадь основания 24 м2, высота 10 м.

Вспучивание глинистого сырья на керамзит в электрическом поле высокой частоты

Применение метода кипящего слоя позволило устра­нить ряд недостатков классической технологии произ­водства керамзита с обжигом во вращающихся печах, однако многие из них, особенно обусловленные нерацио­нальным топливосжиганием и подводом теплоты к час­тицам материала, остались нерешенными.

Глинистые гранулы различных размеров и формы как в отдельности, так и в слое в разные перио­ды обжига имеют различную влажность, плотность, теплопроводность и температуропроводность. Поэтому они нагреваются и вспучиваются неравномерно, что при­водит к преждевременному перегреву одних и недожогу других, а показатели насыпной плотности и прочности керамзита характеризуются нередко большим разбросом.

Тодес О. М., Гринбаум М. Б., Станякин В. М., Черем-ский А. Л. и др. предложили и исследовали новый метод получения керамзита с обжигом в электрическом поле высокой частоты, в значительной мере лишенный указан­ных недостатков. Способ основан на использовании то­ков высокой частоты для внутреннего диэлектрического нагрева зерен глинистого материала до температуры вспучивания и выделения теплоты при поддержании эк­зотермических реакций в температурном интервале поро­образования.

Воздействие поляризации в высокочастотном поле на глинистый материал приводит к интенсификации реак­ций газовыделения, что исключает необходимость ввода ряда добавок, стимулирующих вспучивание.

Тепловой высокочастотный удар обеспечивает также перемещение ряда реакций газовыделения в область вы­соких температур, когда материал приводится в пиропластическое состояние с оптимальной для вспучивания вязкостью. Особое преимущество диэлектрического на­грева состоит в определенной его избирательности, что делает процесс обжига стабильным и не зависимым от плотности, размера формы, теплопроводности и темпера­туропроводности зерен материала.

Рациональное аппаратурное оформление конструкции установки, сочетающей в себе высокочастотный нагрев в кипящем слое с эффективным использованием теплоты отходящего газа и керамзита в двух движущихся слоях, показано на рис. 6.

Рис. 6. Схема модели печи кипящего слоя с обжигом в электри­ческом поле токов высокой частоты и распределения температуры газов и материала по высоте

 

Гранулированный материал равномерно подается из бункера 1 питателем 2 через патрубок 3 в движущийся слой 4. В этом слое материал прогревается за счет отхо­дящих газов, направляемых через патрубок 13. Далее материал через отверстия решетки 5, регулируемые шибером 12, поступает в кипящий слои 6 на решетку 10. Кипящий слой, в котором частицы поддерживаются в псевдоожиженном состоянии, нагревается до температу­ры вспучивания токами высокой частоты через пластины высокочастотного конденсатора 11, и вспученный материал через патрубок 7 отводится в зону слоя 9, где ох­лаждается воздухом, поступающим из паукообразного распределителя 8, и отводится на транспортер.

На основе проведенных исследований осуществляет­ся отработка технологических и электрических парамет­ров установок полигонного и стационарного типов.

Производство керамзита по ступенчатому способу в кольцевой печи с вращающимся подом

Отмечая известные, серьезные недостатки распрост­раненных однобарабанных вращающихся печей для про­изводства керамзита: нестабильность выпуска заполни­теля по прочности и плотности; сложность обжига сла­бовспучивающихся с малым интервалом вспучивания глин; невозможность создания в них требуемого ступен­чатого режима термообработки гранул на керамзит;

большой унос мелочи и т. д.,—Р. Б. Оганесян, Н. А.Тетруашвили и В. А. Мещеряков предложили использовать для этих целей модернизированную кольцевую печь с вращающимся подом, широко распространенную в ме­таллургической промышленности2.

В общем виде технологическая схема производства керамзита на указанной линии предусматривает формов­ку сырцовых гранул на ленточном кирпичеделательном прессе, сушку в сушильном барабане с окаткой в нем гранул, подогрев полуфабриката в слоевом подогрева­теле примерно до 200—250° С с последующим вспучиванием гранул в кольцевой печи на непрерывно вращаю­щемся поде при однослойной его загрузке, охлаждение, сортировку и складирование заполнителя.

Обжиговый агрегат технологической линии включает слоевой подогреватель, кольцевую обжиговую печь и хо­лодильник-аэрожелоб.

Кольцевая печь (рис. 7) состоит из стационарных стен толщиной 750 мм и свода с теплоизоляционной засыпкой—700 мм, вращающегося пода (включая метал­лическую платформу, футеровку толщиной 500 мм, коль­цевой рольганг), гидрозатвора. Средний диаметр коль­цевой печи 11,25, ширина 2,4, высота от поверхности пода до замка свода 0,81 м. Длина зоны обжига (от узла за­грузки до узла выгрузки керамзита) 28 м, в том числе зоны расположения горелок—19 м.

Рис.7  Схема кольцевой печи для обжига керамзита

1. — труба дымовая; 2 — кладка печи; 3 — газооборудование; 4 — футеровка кольцевого пода; 5—выгружатель; 6—подготовитель слоевой; 7 — венти­ляционная установка слоевого подготовителя; 8 — автоматика; 9 — установ­ка дымовых вентиляторов и рекуператора; 10—под кольцевой с приводом; 11 — каркас печи.

 Кольцевой канал заканчивается дымоотборной шахтой, из которой дымо­вые газы по борову подаются в слоевой подогреватель и далее дымососом направляются в трубу. Часть дымо­вых газов поступает в сушильный барабан.

На участках газопровода предусмотрены поворотные заслонки для автоматического регулирования расхода природного газа. Керамзит с поверхности футеровки по­да удаляется выгружателем. Частота вращения пода пе­чи изменяется плавно в широких пределах с помощью регулируемого асинхронного электропривода. Контроль и управление процессом обжига, управление работой оборудования печи осуществляется со щита КИП.

Нельзя не отметить, что значительное число зерен, обжигаемых в монослое, имеет приплюснутую, а не округлую или гравелистую форму, что противоречит требованиям к размеру и форме легких заполнителей бетона.

Авторы все еще продолжают сравнивать расход топлива с од­нобарабанными вращающимися печами. Между тем расход топли­ва на обжиг следует сравнивать не с однобарабанными, а двухба­рабанными печами или им подобными, где к настоящему времени расход теплоты не превышает 2500—3360 кДж/кг, или в 2—3 раза меньше, чем в однобарабанных.

3.3. Режим работы цеха.

Отправными данными для расчета технологического оборудования, потоков сырья и т.п. является режим работы цеха,

Режим работы устанавливают в соответствии с трудовым законода­тельством по нормам технологического проектирования предприятий вяжу­щих веществ»

При назначении режима работы цеха необходимо стремиться обеспе­чить возможно более полное использование оборудования /основных фон­дов/ и принимать наибольшее количество рабочих смен в сутки

Завод по производству керамзитового гравия будет иметь два цеха основного производ­ства: цех обжига и цех помола.

Цеха помола чаще работают по режиму прерывной недели в три смены. При этом при трехсменной работе в неделю с одним выходным днем в каждую восьмую неделю расчетное коли­чество рабочих суток в году принимают равным  - 253 рабочим дням (5 дней в неделю по 23 ч) в утреннюю и вечернюю смену по 7,5 ч с обеденным перерывом 0,5 ч и в ночную смену 7 ч без обеденного перерыва и 52 субботних дня с одной сменой по 8 ч.

Расчетный годовой фонд времени работу технологического оборудова­ния в часах, на основании которого рассчитывается производственная мощность предприятия в целом и отдельных линий установок, определяют по формуле

                           

где Вр—расчетный годовой фонд времени работы технологического оборудования, ч;

Ср—расчетное количество рабочих суток в году;

Ч--количество рабочих часов в году;

Ки--среднегодовой коэффициент использования технологического оборудования,

При прерывной рабочей неделе с двумя выходными днями при трехсменной работе  Ки принимается равным 0,876.

Годовой фонд работы оборудования составляет

— при трехсменной работе - 253 дн х 23 ч + 52 дн х В ч = б235 ч.

 Расчетный фонд рабочего времени составит =6235 х 0,876 = 5462 ч.

3.4. Расчет производительности, грузопотоков и определение расхода сырьевых материалов.

 Производство заполнителей для бетона связано с переработкой и транспортировкой больших количеств материалов. При этом объем перерабатываемых материалов изменяется в связи с неизбежными потерями технологического (обжиг, сушка) и механического (унос, распыл) характера. Учет изменений, происходящих в перерабатываемых материалах на всех стадиях производственного процесса, необходим для определения расхода сырьвых  материалов и для расчета и подбора оборудования.

Определение количества материалов, проходящих через отдельные технологические операции, называют расчетом грузопотоков. Расчет ведут, исходя из программы производства, начиная со склада готовой продукции к складам сырья.

Размеры технологических потерь определяют по нормативным денным. Размеры механических потерь во многом зависят от организации производственного процесса и применяемого оборудования и принимаются на основании опыта аналогичных предприятий.

В проекте могут быть приняты следующие размеры механических потерь:

1. Потери при  дроблении – 1%

2. Потери при транспортировке дробленого материала – 1%

3. Потери при помоле - 1 %

4. Потери при транспортировке тонкомолотых материалов – 0,5%,

Расчет грузопотоков цеха по производству керамзитового гравия

Сырье для керамзитового гравия является:

            глина– 95%,

            вода--4%,

            добавка химическая (лигносульфанаты) --1%

Для производства керамзитового гравия вибрационным методом используем сухое глинистое сырье  однородное по составу и практически не содержащее  вредных  включений  с насыпной плотностью в естественном состоянии 1500 кг/м3.

Для получения шаровидных форм  гранул добавляем 4% воды на стадии гранулирования.

Для лучшего склеивания порошкообразного материала применяется  специальная химическая добавка – лигносульфанаты с насыпной плотностью 700кг/м3 в количестве 1%.

Сортировка вспучееного материала осущуствляется в барабанных грохотах, где керамзит делится  на следующие фракции:5-10, 10-20, 20-40.

В зависимости от объемного насыпного веса получаем гравий марки 500. Выпускаемый керамзитовый гравий  с насыпной плотностью 500 кг/м3  характеризуется повышенной прочностью и используется для приготовления высоковспучиваемого керамзитобетона при изготовлении напряженно- армированных конструкций.

Работа цеха в три смены по прерывной  неделе.

 Производительность цеха по массе: 50 т гравия в сутки или 2,08 т в час, или 11360,96  т в год.

                                           по объему: 100 м3/сутки или 4,16 м3/час, или 22721,92 м3/год.

1) При грохочении потери состовят 1%. Следовательно на помол должно поступить:

В год       Пг=11360,96·1,01=11474,57т.

В час    

      2) При транспортировании керамзитового гравия  на сортировку теряется 1%

Следовательно должно поступить:

В год    Пг=11474,57·1,01=11589,32т.

В час     Пч=2,10·1,01=2,12т

3)Потеря в комбинированной установке-1%; Потеря за счет остаточной влажности глины – 15%. Потеря  за счет  добавленной воды при гранулировании – 4%. Таким образом суммарные потери составят:

Пг=11589,32·120=13769,48т

Пч=2,12·1,2=2,52т

4)Потеря при поступлении в тарельчатый гранулятор- 1%;

Пг=13769,48·1,01=13907,17т

Пч=2,52·1,01=2,545т

5)В тарельчатый гранулятор поступает 3 отдозированных и раздельно подготовленных компонента в заданном соотношении. Количество каждого материала, поступающего в гранулятор должно  составлять:

глина– 95%                                  т

                                                            ГЧ=2,545·0,95=2,42т

вода--4%                                           т

ВЧ=2,545·0,04=0,10т

добавка (лигносульфанаты)-1%    ДГ=13907,17·0.01=139,07т

ДЧ=2,545·0,01=0,025т

   6)При помоле теряется I % материалов, следовательно на помол должно поступить     

Гг=13211,81·1,01=13343,93т

Гч=2,545·1,01=2,57т

7) При транспортировании теряется 0,5% Следовательно перед мельницей в бункера поступит:

 Гг=13343,93·1,005=13410,65т

Гч=2,57·1,005=2,58т

8)При сушке глины имеющей влажность 20% и остаточную влажность 15% теряется 5% и 0,5% за счет уноса с дымовыми газами, всего потери составляют 5,5%. Поэтому в сушильный барабан должно поступать  глины:

                                                            ГГ=13410,65·1,055=14148,23т

   ГЧ=2,58·1,055=2,72т

9)При транспортировании дробленного материала теряется 0,5%, следовательно должно поступать:

Страницы: 1, 2, 3, 4, 5, 6, 7