рефераты

рефераты

 
 
рефераты рефераты

Меню

Реферат: Керамзит рефераты

Чтобы обеспечить оптимальный режим термообработки, зону вспучивания печи, непосредственно примыкающую к форсунке, иногда отделяют от остальной части (зоны под­готовки) кольцевым порогом. Применяют также двухбарабанные печи, в которых зоны подготовки и вспучивания представлены двумя сопряженными барабанами, вращаю­щимися с разными скоростями.

В двухбарабанной печи удается создать оптимальный для каждого вида сырья режим термообработки. Промыш­ленный опыт показал, что при этом улучшается качество керамзита, значительно увеличивается его выход, а так­же сокращается удельный расход топлива. В связи с тем, что хорошо вспучивающегося глинистого сырья для произ­водства керамзита сравнительно мало, при использовании средне- и слабовспучивающегося сырья необходимо стре­миться к оптимизации режима термообработки.

Из зарубежного опыта известно, что для получения за­полнителей типа керамзита из сырья (промышленных от­ходов), отличающегося особой чувствительностью к режи­му обжига, используют трехбарабанные вращающиеся пе­чи или три-четыре последовательно располагаемые печи, в которых обеспечиваются не только оптимальные скорость и длительность нагрева на каждом этапе термообработки, но и различная газовая среда.

Значение характера газовой среды в производстве ке­рамзита обусловлено происходящими при обжиге химиче­скими реакциями. В восстановительной среде окись железа Fe2O3 переходит в закись FeO, что является не только од­ним из источников газообразования, но и важнейшим фак­тором перехода глины в пиропластическое состояние. Вну­три гранул восстановительная среда обеспечивается за счет присутствия органических примесей или добавок, но при окислительной среде в печи (при большом избытке возду­ха) органические примеси и добавки могут преждевремен­но выгореть. Поэтому окислительная газовая среда на ста­дии термоподготовки, как правило, нежелательна, хотя имеется и другая точка зрения, согласно которой целесо­образно получать высокопрочный керамзитовый гравий с невспученной плотной корочкой. Такая корочка толщиной до 3 мм образуется (по предложению Северного филиала ВНИИСТ) при выгорании органических примесей в поверх­ностном слое гранул, обжигаемых в окислительной среде.

По мнению автора, при производстве керамзита следует стремиться к повышению коэффициента вспучивания сырья, так как невспучивающегося или маловспучивающегося гли­нистого сырья для получения высокопрочного заполнителя имеется много, а хорошо вспучивающегося не хватает. С этой точки зрения наличие плотной корочки значительной толщины на керамзитовом гравии свидетельствует о недо­использовании способности сырья к вспучиванию и умень­шении выхода продукции.

В восстановительной среде зоны вспучивания печи мо­жет произойти оплавление поверхности гранул, поэтому газовая среда здесь должна быть слабоокислительной. При этом во вспучивающихся гранулах поддерживается вос­становительная среда, обеспечивающая пиропластическое состояние массы и газовыделение, а поверхность гранул не оплавляется.

Характер газовой среды косвенно, через окисное или закисное состояние железистых примесей, отражается на цвете керамзита. Красновато-бурая поверхность гранул го­ворит об окислительной среде (Fe2O3), темно-серая, почти черная окраска в изломе,— о восстановительной (FeO),

Различают четыре основные технологические схемы подготовки сырцовых гранул, или четыре способа произ­водства керамзита: сухой, пластический, порошково-пластический и мокрый.

Сухой способ используют при наличии камнеподобного глинистого сырья (плотные сухие глинистые породы, глинистые сланцы). Он наиболее прост: сырье дробится и направляется во вращающуюся печь. Предварительно не­обходимо отсеять мелочь и слишком крупные куски, напра­вив последние на дополнительное дробление. Этот способ оправдывает себя, если исходная порода однородна, не содержит вредных включений и характеризуется достаточ­но высоким коэффициентом вспучивания.

Наибольшее распространение получил пластиче­ский способ. Рыхлое глинистое сырье по этому способу перерабатывается в увлажненном состоянии в вальцах, глиномешалках и других агрегатах (как в производстве кирпича). Затем из пластичной глиномассы на дырчатых вальцах или ленточных шнековых прессах формуются сырцовые гранулы в виде цилиндриков, которые при даль­нейшей транспортировке или при специальной обработке окатываются, округляются.

Качество сырцовых гранул во многом определяет ка­чество готового керамзита. Поэтому целесообразна тща­тельная переработка глинистого сырья и формование плот­ных гранул одинакового размера. Размер гранул задается исходя из требуемой крупности керамзитового гравия и установленного для данного сырья коэффициента вспучи­вания.

Гранулы с влажностью примерно 20% могут сразу на­правляться во вращающуюся печь или, что выгоднее, пред­варительно подсушиваться в сушильных барабанах, в дру­гих теплообменных устройствах с использованием тепла отходящих дымовых газов вращающейся печи. При подаче в печь подсушенных гранул ее производительность может быть повышена.

Таким образом, производство керамзита по пластиче­скому способу сложнее, чем по сухому, более энергоемко, требует значительных капиталовложений, но, с другой сто­роны, переработка глинистого сырья с разрушением его естественной структуры, усреднение, гомогенизация, а так­же возможность улучшения его добавками позволяют уве­личить коэффициент вспучивания.

Порошково-пластический способ отличает­ся от пластического   тем, что   вначале   помолом   сухого глинистого сырья получают порошок, а потом из этого по­рошка при добавлении воды получают пластичную глино-массу, из которой формуют гранулы, как описано выше. Не­обходимость помола связана с дополнительными  затрата­ми. Кроме того, если сырье недостаточно сухое, требуется его сушка перед помолом. Но в ряде случаев  этот способ подготовки сырья целесообразен: если сырье неоднородно по составу, то в порошкообразном состоянии его легче пе­ремешать и гомогенизировать; если требуется вводить до­бавки, то при помоле их легче равномерно   распределить; если в сырье есть вредные   включения зерен   известняка, гипса, то в размолотом и распределенном по всему объему состоянии они уже не опасны; если такая тщательная переработка сырья приводит к улучшению вспучивания, то повышенный выход керамзита и его более высокое качест­во оправдывают произведенные затраты.

Мокрый (шликерный) способ заключается в разве­дении глины в воде в специальных больших емкостях — глиноболтушках. Влажность получаемой пульпы (шлике­ра, шлама)  примерно 50%. Пульпа насосами подается в шламбассейны и оттуда — во вращающиеся печи. В этом случае в части вращающейся печи устраивается завеса из подвешенных цепей. Цепи служат теплообменником: они нагреваются уходящими из печи газами и подсушивают пульпу, затем разбивают подсыхающую «кашу» на грану­лы, которые окатываются, окончательно высыхают, нагре­ваются и вспучиваются. Недостаток этого способа — по­вышенный расход топлива, связанный с большой начальной влажностью шликера. Преимуществами являются дости­жение однородности сырьевой пульпы, возможность и про­стота введения и тщательного распределения добавок, простота удаления из сырья каменистых включений и зерен известняка. Этот способ рекомендуется при высокой карь­ерной влажности глины, когда она выше формовочной (при пластическом формовании гранул). Он может быть приме­нен также в сочетании с гидромеханизированной добычей глины и подачей ее на завод в виде пульпы по трубам вместо применяемой сейчас разработки экскаваторами с перевозкой автотранспортом.

Керамзит, получаемый по любому из описанных выше способов, после обжига необходимо охладить. Установле­но, что от скорости охлаждения зависят прочностные свой­ства керамзита. При слишком быстром охлаждении керамзита его зерна могут растрескаться или же в них сохранятся остаточные напряжения, которые могут про­явиться в бетоне. С другой стороны, и при слишком мед­ленном охлаждении керамзита сразу после вспучивания возможно снижение его качества из-за смятия размягчен­ных гранул, а также в связи с окислительными процессами, в результате которых FeO переходит в Fe2O3, что сопро­вождается деструкцией и снижением прочности.

Сразу после вспучивания желательно быстрое охлаж­дение керамзита до температуры 800—900 °С для закреп­ления структуры и предотвращения окисления закисного железа. Затем рекомендуется медленное охлаждение до температуры 600—700 °С в течение 20 мин для обеспечений затвердевания стеклофазы без больших термических на­пряжений, а также формирования в ней кристаллических минералов, повышающих прочность керамзита. Далее возможно сравнительно быстрое охлаждение керамзита в те­чение нескольких минут.

Первый этап охлаждения керамзита осуществляется еще в пределах вращающейся печи поступающим в нее воздухом. Затем керамзит охлаждается воздухом в бара­банных, слоевых холодильниках, аэрожелобах.

Для фракционирования керамзитового гравия исполь­зуют грохоты, преимущественно барабанные — цилиндри­ческие или многогранные (бураты).

Внутризаводской транспорт керамзита — конвейерный (ленточные транспортеры), иногда пневматический (по­током воздуха по трубам). При пневмотранспорте возмож­но повреждение поверхности гранул и их дробление. Поэто­му этот удобный и во многих отношениях эффективный вид транспорта керамзита не получил широкого распростра­нения.

Фракционированный керамзит поступает на склад го­товой продукции бункерного или силосного типа.

Способы получения.

Вспучивание глинистого сырья на керамзит в печах кипящего слоя.

В последнее время в некоторых отраслях промыш­ленности, особенно цветной металлургии, получил разви­тие метод обжига материалов в кипящем слое. Этот ме­тод успешно опробован также в производстве цемент­ного клинкера, извести и нового заполнителя легких бе­тонов — перлита. Кипящий слой образуется тогда, когда через слой ма­териала надлежащей крупности зерен проходит восхо­дящий поток газа со скоростью, достаточно высокой, что­бы нарушить неподвижность и создать интенсивное тур­булентное движение, напоминающее кипение жидкости. При этом скорость газового потока должна быть проме­жуточной между минимальной скоростью, при которой зерна как бы теряют массу (скорость витания), и ско­ростью, при которой они выносятся из рабочей камеры аппарата (взвешенное состояние).

Внутри кипящего слоя можно сжигать твердое, жидкое и газообразное топливо или подавать для обжига теплоноситель извне. Поверхность контакта зерен обжи­гаемого материала и теплоносителя достигает в кипящем слое максимальной величины, вследствие чего коэффи­циент теплопередачи отличается весьма высокими пока­зателями—около 209 Вт/м 2 с).

Увеличение поверхности контакта способствует уско­рению тепло- и массообмена, а непрерывное перемеши­вание частиц материала обеспечивает выравнивание температуры в слое, что позволяет проводить процесс быстро и в небольших рабочих объемах. Процессы в ки­пящем слое легко регулируются и поддаются автомати­зации. Как показала практика, в кипящем слое можно обрабатывать зерна твердых материалов размером от долей миллиметра до 10 мм при различной влажности, так как влага, попадающая в кипящий слой, почти мгно­венно испаряется.

Наряду с большими достоинствами метод кипящего слоя обладает и рядом недостатков. Так, интенсивное движение частиц в слое и взаимное их перемещение не позволяют предсказать положения частицы в какой-ли­бо промежуток времени. Это означает, что часть посту­пающих в камеру свежих частиц может скорее выйти из слоя, чем это требуется, и перегревается, что для ряда технологических процессов неприемлемо. Другой недо­статок метода вытекает из условий взаимного соударе­ния частиц и ударов их о стенки камеры, что приводит к истиранию материала и накоплению пыли, а также преждевременному износу аппарата.

Печи для обжига в кипящем слое имеют самую раз­нообразную конструкцию. Они подразделяются на одно- и многокамерные. Каждая печь состоит из камеры, свода, пода, устройств для загрузки и выгрузки материала и газоходов.

Места загрузки и выгрузки материала могут быть расположены сверху, снизу или сбоку печи, но всегда друг против друга. Наиболее существенной частью печи является под, представляющий собой устройство для равномерного распределения газа (воздуха), поступаю­щего в печь, по нижнему горизонтальному сечению слоя. Каждая рабочая камера печи в горизонтальном сечении может быть выполнена в форме квадрата, прямоуголь­ника, круга и т. д.

Циркуляционный способ

Кипящий слой псевдоожиженного зернистого мате­риала восходящими вверх газовыми потоками является не единственным его состоянием в этих условиях. Так, если в камеру 1 (рис. 1) на решетку 3 через патрубок 4 засыпать гранулированный материал, то он образует плотный слой с определенной межзерновой пустотно-стью. При подаче через этот слой восходящего потока газа с постепенно увеличивающейся скоростью материал сперва будет оставаться неподвижным, а сопротивление слоя будет расти с увеличением скорости газа. Когда же сила сопротивления фильтрации- газа сравняется с ве­сом слоя зернистого материала, то дальнейший рост гид­равлического сопротивления прекращается и увеличение скорости газового потока приводит к расширению слоя. При этом слой взвешивается, увеличивается в объеме, частицы приобретают подвижность. Поверхность слоя в этом случае выравнивается, и если в стенке камеры сде­лать отверстие 2, то через него будет вытекать струя материала. Это и послужило основанием назвать слой зернистого материала со свойствами текучести—псевдоожиженным. При дальнейшем увеличении скорости газа через псевдоожиженный слой будут прорываться пузырь­ки, слой начнет интенсивно перемешиваться и бурлить, напоминая кипящую жидкость, что послужило основа­нием назвать его в этом состоянии кипящим слоем. Ха­рактерным состоянием кипящего слоя является его от­носительная плотность, при которой зерна не отрывают­ся в пространство для витания.

Новое увеличение скорости газа сопровождается вы­носом зерен материала из кипящего слоя.



Рис.1 Схематическое изобра­жение фонтанирующего слоя

1 — корпус;  2 — центральный фон­тан; 3 — решетка; 4 — патрубок для подвода газа;

 5 — конус материала; 

Происходящая таким образом циркуляция частиц— подъем в фонтане центральной части слоя и опускание в периферийной — отражает новое состояние материала, получившего название фонтанирующего слоя. Цирку­ляция частиц здесь более интенсивна, чем в обычных псевдоожиженных слоях.

В Советском Союзе устройства с фонтанирующим слоем появились значительно раньше, чем за рубежом. Они использовались при сушке хлопка, зерна, торфа, в топочной технике и т. д. Большой интерес представляет и обжиг керамзита в фонтанирующем слое. В последние годы в ФРГ были проведены успешные опыты и предло­жен для практики новый циркуляционный способ про­изводства керамзита с обжигом в фонтанирующем слое.

Построенная в 1965 г. фирмой «Деннерт» в г. Хенге близ Нюрнберга установка производительностью 400м3 керамзитового гравия в сутки с использованием метода обжига заполнителя в фонтанирующем слое характери­зуется следующими особенностями.

Сырьем для производства керамзита служит тонкодисперсная легкоплавкая глина с карьерной влажностью 13—15%. При указанной влажности глина сравнитель­но плотная и может подвергаться тонкому дроблению без замазывания механизмов. Ее химический состав ха­рактеризуется содержанием (в %): SiO2—49,10; Fe2О3— 7,98; А1203— 21,89; MnO—0,11; CaO—3,58; MgO—1,57; SO2—1,85; R20—2,86 и ППП—11,06.

На карьере глину добывают многоковшовым экска­ватором на гусеничном ходу. Параллельно фронту добы­чи глины установлен ленточный конвейер длиной 150 м. Предварительно глину, доставляемую с карьера. измельчают на валковой дробилке. Затем она поступает в ящичный подаватель, проходит через металлический желоб с электромагнитом для очистки от металлических включений и поступает в ударно-отражательную диско­вую мельницу, где тонко измельчается и гомогенизирует­ся при естественной влажности. Далее тонкоизмельченная глина непрерывным потоком направляется в тарель­чатый гранулятор, где к ней добавляют 2—4 % воды и специальную добавку, способствующую образованию шаровидной формы гранул. По ленточному конвейеру гранулы поступают в сушильный противоточный барабан длиной 10 и диаметром 1,5 м.

После выхода из сушильного барабана от материала отделяются мелкие и крупные фракции, которые направ­ляются обратно для повторной переработки в ударно-отражательную дисковую мельницу, а гранулы разме­ром от 1 до 12 мм, нагретые в сушильном барабане до 200 °С, конвейером подаются в промежуточный бун­кер объемом 5 м3.

При рассмотренной системе подготовки перерабаты­ваться может также глина и с влажностью выше 20 °/о. В этом случае мельница, тарельчатый гранулятор и су­шильный барабан имеют соответственно большие размеры и постоянно загружаются с избытком. Избыточный материал автоматически отводится обратно в мельницу. Здесь сухой материал смешивается с влажным сырьем и перерабатывается по схеме.

Печная установка состоит из бункера объемом 5 м3, загрузочного шлюза, камеры обжига, специальной горел­ки и затвора. Установка работает периодически с загруз­кой каждые 40 с.

Из бункера сухие гранулы поступают в объемный дозатор, откуда они периодически загружаются в печь, где обжигаются в фонтанирующем слое (рис.3).

                           

Рис.3  Схема печи с фонта­нирующим слоем

1— отходящие газы;

2—загрузка;

3 — выгрузка

В печи гранулы захватываются идущим вверх пото­ком газов и поднимаются вверх до тех пор, пока сила газового потока не станет меньше силы тяжести обжи­гаемого материала, который попадает вниз, затем снова захватывается и поднимается потоком газа и т. д. Цир­кулируя таким образом в течение 40 с, гранулы вспучи­ваются. Затем подача топлива прекращается, открыва­ется затвор и в течение 4 с вспученный материал выгру­жается. Обожженный материал отгружается конвейе­ром на сортировку, а новая партия гранулированного материала поступает в печь на вспучивание.

Вследствие теплового удара зерна керамзита имеют твердую прочную оболочку, значительно увеличивающую прочность зерна. При этом вследствие равномерной теп­ловой обработки мелкие и крупные гранулы одинаково хорошо вспучиваются. Печь футерована огнеупорным легковесным теплоизоляционным материалом. Наружная температура стены не превышает 50 °С, т. е. потери теп­лоты через излучение малы.

Страницы: 1, 2, 3, 4, 5, 6, 7