рефераты

рефераты

 
 
рефераты рефераты

Меню

Реферат: Разработка методики программного тестирования цифровых устройств с помощью программного пакета Design Center рефераты

Реферат: Разработка методики программного тестирования цифровых устройств с помощью программного пакета Design Center

ВВЕДЕНИЕ

Для выхода нашей станы из экономического кризиса необходимо повышение темпов и эффективности развития экономики на базе уско­рения научно-технического прогресса, техническое перевооружение и реконструкция производства , интенсивное использование созданного производственного потенциала, совершенствование системы управле­ния, хозяйственного механизма и достижение на этой основе даль­нейшего подъема благосостояния народа. Исходя из этого необходимо на основе проведения единой технической политики во всех отраслях народного хозяйства ускорить техническое перевооружение произ-

водства, широко  внедрять  прогрессивную  технику  и  технологию,

обеспечивающие повышение производительности труда и качество про­дукции. Необходимо обеспечить создание и выпуск новых видов при­боров и радиоэлектронной аппаратуры, основанных на широком приме­нении микроэлектроники.

В настоящее время этап развития микроэлектроники и аппара­тостроения на ее основе можно назвать этапом интегральных схем (ИС).

Интегральные схемы, являясь основной элементной базой микро­электроники, позволяют реализовать подавляющее большинство функ­ций радиоаппаратуры.

Микрокомпоненты, применяемые совместно с ИС, должны быть совместимыми с ними по конструкции, технологии и уровню надежнос­ти. В некоторых случаях оправдано применение гибридных интеграль­ных схем (ГИС). Это объясняется следующими обстоятельствами:

Технология ГИС проста и требует меньших, чем полупроводнико­вая технология затрат на оборудование и помещения.

Технологию ГИС можно рассматривать как перспективную по сравнению с существующей технологией многослойного печатного монтажа.

Пассивную часть ГИС изготавливают на отдельной подложке, что позволяет достигать высокого качества пассивных элементов при не­обходимости создавать прецизионные ГИС.

Основной проблемой при создании микроэлектронной аппаратуры (МЭА) является выбор конструкции, а также:

- обеспечение теплового режима;

- обеспечение надежности;

- обеспечение компоновки и соединений;

- снижение стоимости МЭА.

При проектировании конкретного образца МЭА должны учитывать­ся:

- назначение и область применения  МЭА;

- заданные электрические характеристики;

- условия эксплуатации, определяющие степень воздействия внешней среды;

- требования к конструкции (надежность, ремонтопригодность, масса, габариты, тепловые режимы);

- технико-экономические характеристики (стоимость, техноло­гичность изготовления).

Основным средством миниатюризации устройств является их ин­тегральное исполнение. В силовых устройствах интеграция - это в первую очередь объединение бескорпусных силовых полупроводниковых приборов в общем корпусе. Примером такого силового устройства яв­ляется разрабатываемый силовой микромодуль вторичного источника питания.

Наряду с ГИС применяются малогабаритные сборки, состоящие из силовых транзисторов и диодов.

В основу проектирования силового микромодуля заложены сов­ременные тенденции конструирования ВИП на базе микроэлектронной

технологии их изготовления.


АНАЛИЗ ТЕХНИЧЕСКОГО ЗАДАНИЯ

Анализируя задание на дипломное проектирование, видно, что модуль используется как составная часть изделия. Наличие при экс­плуатации изделия влажности до 93% требует предусмотреть защиту

радиоэлементов и печатных плат путем герметизации модуля, а также

пропиткой и заливкой. Так в частности трансформатор преобразова­теля заливается . Герметизация модуля обеспечивается с помощью резиновой прокладки по периметру между крышкой и корпусом. Наибо­лее сложным вопросом является обеспечение нормального теплового режима при эксплуатации в диапазоне температур - 40-60o С.

Основное влияние температуры будет сказываться на радиоэле­менты и особенно верхний предел температуры +60o С. С этой целью выбор элементной базы произведен исключительно по техническим ус­ловиям и ГОСТам, что исключает ошибки в выборе элементной базы. Все выбранные радиоэлементы обеспечивают предельные температуры эксплуатации. Такой режим достигается благодаря особенности конс­трукции. Особенность заключается в том, что большинство теплонаг­руженных элементов имеют хороший тепловой контакт на корпус моду­ля. Так, например, трансформатор преобразователя находится в гнезде корпуса. Корпус выполнен из материала Д16, обладающим хо­рошей теплопроводностью, а для большего уменьшения теплового соп­ротивления, там где это необходимо, применяется теплопроводящая паста КНТ-8. Все это позволяет спроектировать модуль в заданных габаритах.

Механические нагрузки на модуль довольно значительные, т.к. он эксплуатируется в изделии устанавливаемом на подвижных объек-

тах Однако, вся конструкция модуля и его элементов отвечают тре­бованиям вибро- и ударной устойчивости, заданной в ТЗ.

Исходя из вышеизложенного, можно утверждать, что модуль обеспечит заданную надежность P(t)=0,9 при t=5000. Проведенный в дальнейшем расчет надежности должен показать правильность выб-

ранной элементной базы и самой конструкции  модуля.  При  меньшем

расчетном значении  надежности  потребуется  пересмотр элементной

базы вариантов и способов охлаждения и возможно всей  конструкции

модуля.

Так, применение   бескорпусных                             транзисторов                 2Т3642Б-2,

2Т376Б1-2, 2Т397А-2 и др., а также пленочных резисторов R1-12, особое значение приобретает полная и тщательная герметизация всего корпуса.

НАЗНАЧЕНИЕ И ПРИНЦИП РАБОТЫ

Проблема создания экономичных, надежных, малогабаритных ис­точников электрической энергии для питания современных радоэлект­ронных устройств становится все более актуальной.

Этой проблемой заняты специалисты всех стран мира

Большое внимание уделяется и повышению КПД вторичных источни­ков питания, т.к. количество их возрастает вместе с теми устройс­твами, где  они используются.  Одновременно растут требования и к стабильности питающей напряжения РЭА.

Поэтому правильный выбор схемы блока питания играет большую роль в получении высокого КПД.

С этой целью была выбрана схема микромодуля питания с широ­ко-импульсной модуляцией.

Блок питания обеспечивает стабилизацию выходного напряжения с одновременной фильтрацией низкочастотных составляющих входного напряжения.

Входное напряжение может изменяться от 20 до 30 В, а выход­ное напряжение при всех дестабилизирующих факторах (изменение входного напряжения, температуры окружающей среды, тока нагрузки) изменяется в пределах 25+1,25 В.

В основу регулирования заложен стабилизированный преобразо­ватель с широтно-импульсной модуляцией. Микромодуль включает в себя входной фильтр, схему управления, промежуточный каскад, трансформаторный преобразователь, выпрямитель, выходной сглажива­ющий фильтр. Входной фильтр состоит из конденсаторов С18...С24, дросселя Др1 и обеспечивает подавление пульсаций рабочей частоты преобразователя, а также обеспечивает непрохождение ВЧ пульсаций бортсети в выходную цепь.

Микромодуль состоит из двух силовых токовых ключей на тран­зисторах Т13,Т14,Т17...Т26 и транзисторов Т15,Т16,Т27...Т36, трансформатора Тр2. Резисторы R46,R47,R48,R49 обеспечивают необ­ходимый режим токовых ключей.

Микромодуль осуществляет необходимую трансформацию напряжения и при  необходимости может произвести гальваническую развязку вы­ходного напряжения.

Выпрямление переменного прямоугольного напряжения осущест­вляется диодами VD12...VD19, включенных по схеме со средней точ­кой вторичной обмотки трансформатора. Диоды VD20,VD21 и конденса­тор С41 позволяют получить требуемую форму выходного выпрямлен-

ного напряжения в момент переключения диодов выпрямителя.

Сглаживающий выходной фильтр состоит из двух последовательно включенных Г-образных LC-фильтров. Первый фильтр состоит из нако­пительного дросселя Др3 и конденсаторов С42...С51, второй - из дросселя Др4 и конденсаторов С52...С57. Первый фильтр производит преобразование широтно-модулированных импульсов в постоянное нап­ряжение. Второй фильтр является фильтром подавления радиопомех и обеспечивает получение заданных пульсаций выходного напряжения.

Схема управления выполнена по гибридно-пленочной технологии и включает в себя задающий генератор (ЗГ) на инверторах У1.1, У1.2, У1.3 и элементах R9, R10, C6; генератор коротких импульсов на У2.1, У1.4, У2.2; генератор пилы на элементах VT6, R16, C12;

ШИМ-модулятор на усилителе постоянного тока (УПТ) У16; раздели­тель каналов на триггере У3.1; два (по числу каналов) выходных каскада на У2.3, VT7, VT8, R17, R18, R19, R24, R22, C8, C9 - пер­вый канал; У2.4, T9, T10, R20, R25, R21, R23, R27, C10, C11 - второй канал; узел защиты от короткого замыкания в нагрузке (У3.2, У7.1, У7.2, У8.1, У8.2, R28, R29, R30, R32, R33, R36, R37, VD8, VD9, C15, C17) и вспомогательные цепи питания схемы управле­ния.

Первый линейный стабилизатор параметрического типа осущест­вляет питание логических элементов У1, У2, У3.

Второй линейный стабилизатор параметрического типа обеспечи­вает питанием +12 В и +6 В УПТ (У6).

Дополнительно в схему управления входит узел гашения, обес­печивающий сброс магнитной энергии промежуточного усилительного каскада и тем самым позволяющий получить требуемую форму выходных импульсов этого каскада.

Промежуточный усилительный каскад выходных сигналов по току схемы управления и согласование по уровню. Он включает в себя ак­тивные элементы VT11, VT12, трансформатор Тр1 с вторичной обмот­кой.

Схема работает следующим образом: при повышении выходного напряжения на вход УПТ через резистивный делитель R50, R34, R35 и R31 поступает повышенное напряжение. Пилообразное напряжение, на­ложенное на постоянное напряжение делителя, сравнивается с опор­ным. На выходе УПТ образуются импульсы, более узкие чем это было было до этого момента. В каждом канале суженные импульсы проходят на выход промежуточного каскада, а с него поступают на вход токо­вых ключей. Токовые ключи меньшее время будут находиться в откры­том состоянии. На накопительный фильтр поступают более узкие им­пульсы. Накопительный фильтр производит сглаживание по среднему значению, поэтому выходное напряжение начинает уменьшаться и стремится к своему нормальному значению.


Обоснование и выбор конструкции микроблока питания РЭА

Микроблок является принципиально новым видом конструктивного исполнения микроэлектронной аппаратуры повышенной надежности и высокого уровня интеграции, перспективным направлением в конс­труировании РЭА различного назначения, являющимся дальнейшим и более гибким развитием методов гибридной микроэлектроники.

Анализ радиоаппаратуры показал, что вторичные источники пи­тания в большинстве случаев создаются на дискретных корпусных элементах, в то время как остальная аппаратурная часть строится на интегральной элементной базе.

Результатом такого подхода явилось то, что объем и масса вторичных источников питания составляет до 40-50% аппаратурной части РЭА.

Во многих случаях эти проблемы вызваны несовершенством конс­трукции вторичных источников питания и устройств, отводящих от них тепло. Эти  причины  сдерживают  внедрение  интегральных методов проектирования силовых устройств и дальнейшее уменьшение их  масс и габаритов.  Общеизвестно, что объемные конструкции блоков пита­ния обладают значительным температурным сопротивлением от их  ис­точника до  его стока.  Кроме того корпусные активные и пассивные элементы схемы также обладают  большим  тепловым  сопротивлением, что в  свою  очередь  требует  дополнительного  увеличения объема конструкции и охлаждающей поверхности.

Тепловой поток от источника тепла до его стока определяется из выражения:

t1 - t2

Q = ------- ,

S Rт где Q  - тепловой поток;

t1 - допустимая  рабочая температура элементов схемы по ТУ;

t2 - температура окружающей среды;

S Rт- суммарное тепловое сопротивление от источника тепла до его стока.

Rт = Riт + Rтс + Rтт

Тепловое сопротивление конструкции определяется из выражения: l

Rт = ---- , l S

где l - расстояние от источника тепла до его стока;

l - теплопроводность;

S - окружающая поверхность;

Из выражения видно, что конструкция силового модуля должна обладать:

кратчайшим расстоянием от источника тепла до его стока

(l должно быть минимальным);

максимальной площадью окружающей поверхности (S должно быть максимальным);

материал теплоотвода должен обладать максимальной теплопро­водностью (l должно быть максимальным).

Наиболее полно этим требованиям отвечает конструкция изде­лия, которая обладает:

- максимальной площадью поверхности при одновременном умень­шении ее объема;

- применением активных элементов с малым тепловым сопротив­лением, т.е. необходимо применить бескорпусные элементы;

- применением конструкции малокорпусных или бескорпусных пассивных элементов (трансформаторы, дроссели);

- применением алюминия, меди, окиси бериллия, керамики 22ХС и им подобных материалов.

Кроме того, такие конструкции обладают минимальной материа­лоемкостью, максимальной простотой монтажа, улучшенными электри­ческими параметрами.


КОНСТРУКТОРСКАЯ ЧАСТЬ

ТЕПЛОВОЙ РАСЧЕТ МИКРОМОДУЛЯ

Конструкторско-технологическая проблема миниатюризации сило­вых устройств заключается в необходимости создавать и применять специальные бескорпусные полупроводниковые приборы и микросхемы,

специальные намоточные  детали  и  особые методы конструирования,

обеспечивающие плотную упаковку элементов и низкое внутренне те­пловое сопротивление конструкции.

На дюралюминиевой  подложке  МСБ (l3=4 мм,  190х130;

l= 170 Вт/м град) расположены дроссели диаметром 36 мм, мощностью 2,8 Вт; диоды диаметром 14 мм и мощностью 1,6 Вт каждый; транс­форматор диаметром 55 мм, мощностью 1,85 Вт; 10 транзисторов диа­метром 10 мм; мощностью по 0,83 Вт каждый, крепятся на медной пластине размером 55х67х2,7 мм.

Применение бескорпусных приборов позволяет уменьшить объем конструкции и довести его до величины полностью определяемой энергетическими соотношениями и условиями охлаждения.

В нашем случае мы рассматриваем тепловой расчет микроузла, который позволяет нам определить картину температурного поля ГИС с помощью расчета тепловых режимов и взаимовлияния элементов.

Примем условные обозначения:

Wi              - удельная мощность рассеивания элемента, Вт/см2;

Wi max - максимальная удельная мощность рассеивания элемен­та, Вт/см2;

DQ             -    допустимая абсолютная погрешность перегрева, oС;

l                  -    теплопроводность подложки, Вт/м - град;

l3                -    толщина подложки, нм;

Rk              -    контактное тепловое сопротивление, м2 град/Вт;

Zo               -    эквивалентный радиус тепла, мм;

ro                -    эквивалентный радиус источника тепла, мм;

Pi                -    мощность источника тепла, Вт;

Si                -    площадь поверхности источника, мм2;


РАСЧЕТ ТЕМПЕРАТУРНОГО ПОЛЯ ИСТОЧНИКА ТЕПЛА

Экивалентный радиус подложки

Zo= 90 мм;

Эквивалентный радиус источника тепла ro=7 мм;

Критериальную величину рассчитываем по формуле:

|\\\\\\\\\

|\\\                / 17Zo2

j=? Bi = / ---------     ;

? Rk7l7lз

|\\\\\\\\\\\\\\\

/ 17(9710-2)2

j =   /                        ----------------  = 3,5; где Rk = 10-3,

? 4710-37170710-3

Bi - критерий Био;

j  - критериальная величина.

Для нахождения критерия f необходимо определить отношение r/Zo.

Определяем функцию  f(r/Zo,j) по таблице;

Y(r/Zo,j)=0,5064

При r=ro определяем тепловой коэффициент F(ro); отношение r/Zo,j= 0,7/9,0=0,078

1

F(ro)= ----- Y(r/Zo,r/Zo,j)

2l37l

F(ro) = 0,37 град/Вт

Температура в точке r=ro составляет

t(ro)7tc = P7F(ro)

t(ro) =  70,6 град

tc принимается равной to устройства и равно 70o.

Рассчитываем коэффициент F(r/Zo) для следующих точек:

r/Zo=0,2;0,3;0,6;1.

Из таблиц находим функцию Y для этих точек:

Y(0,2)=0,228   Y(0,6)=0,0376

Y(0,3)=0,136   Y(1)=0,0158

Тепловые коэффициенты равны:

F(0,2)=0,17                      F(0,3)=0,10

F(0,6)=0,03                      F(1,0)=0,012

Перегревы в этих точках составляют:

Q(0,2)=0,27 Q(0,6)=0,048

Q(0,3)=0,16 Q(1,0)=0,02

Вокруг каждого источника делаем окантовку - зону влияния элементов.

2.1.2 РАСЧЕТ ВЗАИМОВЛИЯНИЯ ЭЛЕМЕНТОВ

Для каждого i-того источника тепла рассчитывается влияние на близлежащие к центру этого источника точки y-х элементов схемы, которые хотя бы частично заключены в области прямоугольника i-то­го элемента.

Температура любой точки поверхности основания определяется по формуле:

Ki7Wi

Qi= ----- 2 e(q1r1) + Sign q27e(q2r1) + Sign r27e(q1r2) +

[     

+ Sign q27Sign r27e(q2r2)2

]

q1 = d1' + |xo| r1 = d2' + |yo|

q2 = d2' - |xo|   r2 = d2' - |yo|

qo = min q1r                                                max q1r

K = ---------- , qc

D1  D2

где  d1'= ---    и                         d2'= ----

l3              l3

D1  и D2  - размеры источника тепла;

Кк - коэффициент качества конструкции; l3

Кк= -- . l

Xo, Yo - безразмерные координаты точки, в которой определяется перегрев в системе координат, центр которой совпадает с центром

i-того элемента, а оси /1-6/ сторонам i-того элемента;

xo = xo / l 3

e(q1r) = e1(qo) - e2(qok)

e1(qo) и e2(qok) даны в таблице.

Определим перегрев Q1-2 в ближайшей тоске влияния дросселя (элемента 2) на транзистор (элемент 1).

d1' = 27,5 / 4 хо = 4,75

d2' = 33,5 / 4 уо = 0

q1 = 11,65          r1 = 8,4

q2 = 2,15          r2 = 8,4

К1 = 1,4               К3 = 1,4

К2 = 4,0                К4 = 4,0

e (q1;r1) = 1

e (q2;r2) = 0,9726

e (q1;r2) = 1

e (q2;r2) = 0,9726

Q1-2 = 0,197

Перегрев в ближайшей точке влияния дросселя (элемент 2) на диод (элемент 3)

Q3-2=0,00003

Для остальных элементов:

Диод (элемент 3)                                                Q1-3 = 6710-3 на транзистор

Стабилитрон (элемент 5)                                Q1-5 = 6710-3                       (элемент 1)

Страницы: 1, 2, 3, 4, 5, 6