рефераты

рефераты

 
 
рефераты рефераты

Меню

Реферат: Лекции по физике рефераты

Так как свет, по представлениям волновой теории, является колебаниями, т.е. Возмущениями неподвижно покоящегося эфира, то естественно было считать, что фактически и было сделано, что абсолютная система отсчета Ньютона - это как раз та самая система, в которой невозмущённый световой эфир покоится.

Естественно было предполагать, что эфир заполняет всё пространство между Солнцем и планетами, а так как с этим пространством уже была связана абсолютная система отсчёта Ньютона, относительно которой Ньютон отсчитывал абсолютное движение, то представлялось вполне естественным предположение, что эфир покоится в этой системе отсчёта.

Представление об эфире как об особой тонкой гипотетической среде, заполняющей всю нашу Солнечную систему и всё межпланетное пространство в ней, существенно обогащало ньютонову чисто механическую небесную механику, изложенную в его «Принципах», в которой интерес проявился только к механическим, а точнее - геометрическим характеристикам движения планет и их спутников, под действием сил всемирного тяготения, в ньютоновой абсолютной системе отсчёта.

Одновременно с представлением о покоящемся эфире в межпланетном пространстве возникал вопрос о возможности измерения немеханическим способом скорости Земли, движущейся равномерно прямолинейно с постоянной скоростью в неподвижном эфире, т.е. с помощью не механических, а оптических экспериментов. Согласно принципу относительности Галилея, механические эксперименты не позволяют этого сделать. Возникла, однако, теперь надежда, что оптические эксперименты как раз и позволят какие-нибудь эффекты, в которых проявлялась бы указанная скорость. Всё дело только в том, чтобы изобрести какой-нибудь такого рода эксперимент.

Вся эта проблема об измерении скорости Земли с помощью чисто оптических, а позднее также и электродинамических экспериментов, производимых на поверхности Земли, известна в истории науки под названием проблемы измерения «эфирного ветра».

В теории этого ветра, с самого начала, приходилось выбирать одну из двух гипотез, известных под именами гипотез Френеля и Стокса.

Гипотеза Френеля (1818 г.)

   Земля движется сквозь неподвижный эфир, который вовсе не увлекается ею или увлекается очень слабо, и поэтому наблюдатель на Земле должен ощущать и регистрировать натекание эфира на Землю, т.е. «эфирный ветер», измеряя скорость которого можно определить «абсолютную скорость» Земли в ньютоновом абсолютном пространстве.

 Гипотеза Стокса (1845 г.)

Земля практически полностью увлекает с собой примыкающий к ней эфир, подобно шару, движущемуся с постоянной скоростью в вязкой неподвижной жидкости, который увлекает примыкающую к его поверхности часть жидкости, и никакого «эфирного ветра», по крайней мере на самой поверхности Земли, а скажем, не высоко в горах, наблюдаться не должно.

Обе гипотезы - Стокса и Френеля - о взаимодействии эфира с движущимся в нём телом - оказались в состоянии количественно объяснить явление астрономической аберрации звёзд и отрицательные результаты оптических экспериментов, произведённых на Земле с целью измерения скорости Земли в межпланетном пространстве. Оптические же явления, наблюдаемые в движущихся прозрачных телах на Земле, смогла объяснить только гипотеза Френеля.

Первую попытку измерить скорость эфирного ветра предпринял Араго в 1810 г. Он решил обнаружить влияние движения Земли на преломление света, идущего от звезды. С этой целью он измерял разности зенитных углов одной и той же звезды, наблюдаемой в телескоп непосредственно и через призму, т.е. попытался наблюдать изменение угла преломления луча света от звезды к призме, когда Земля (а значит, и призма) двигалась к звезде и (через полгода) - от звезды. Араго ожидал измерить угол отклонения, равный, по его оценке, 2’.Но опыты дали отрицательный результат. И тогда Араго обратился к Френелю с просьбой объяснить этот неожиданный для него факт. В 1818 г. было опубликовано письмо Френеля к Араго, в котором Френель с единых позиций нашёл объяснение и отрицательного результата опыта Араго, и объяснение астрономической аберрации.

Хотя Френель понимал, что допущение полного увлечения эфира движущейся Землёй легко объясняет отрицательный результат опыта Араго, он его не принял, так как должен был объяснить также и результат опыта Брэдли по наблюдению аберрации звёзд. Поэтому Френель, следуя предложению Юнга 1804 г., в основу своей теории взял допущение о неподвижном, практически не увлекаемом движущейся Землёй эфире (так как показатель преломления n воздуха очень близок к единице). Стеклянная призма Араго (показатель преломления стекла n» 1,3), однако, по предположению Френеля частично увлекала эфир. Френель теоретически вывел значение коэффициента увлечения, равное 1-1/n2, где n-показатель преломления стекла призмы. При таком значении коэффициента увлечения Френель смог объяснить и отрицательный результат опыта Араго, и опыта Брэдли по аберрации.

Физо в 1856 г. удалось измерить в земных условиях не только скорость света в воздухе (практически совпадающую со скоростью в пустоте),но и скорость света в воде, движущейся с некоторой заданной скоростью V. Эксперимент состоял в изменении смещения интерференционных полос в интерферометре, в плечи которого были помещены две трубы с прозрачными торцами и с текущей по ним в противоположных направлениях со скоростью V водой.

Эксперимент Физо показал, что наблюдаемый сдвиг интерференционных полос соответствовал скорости света в движущейся воде относительно неподвижных стенок труб, равной

Ccp.=c/n±v(1-1/n2),

где знак плюс соответствует движению светового луча и воды в одинаковом направлении, минус -в противоположных, n-показатель преломления воды.

Попытками измерить скорость эфирного ветра на движущейся Земле занимались многие крупные физики в последней четверти XIX в., проводившие для этого различные оптические и электродинамические эксперименты.

Скорость света в пустоте равна 300 000 км/c. Скорость движения Земли по своей орбите равна 30 км/с. Следовательно, v/c=0,0001, v2/c2=0,00000001; речь идёт об очень малых эффектах.

В 1871 г. Майкельсон, а в 1878 г. Майкельсон и Морли произвели первый, ставший впоследствии знаменитым эксперимент второго порядка малости по v/c - эксперимент Майкельсона, который потом неоднократно был повторен другими исследователями.

Оптический прибор - знаменитый интерферометр Майкельсона - размещался на тяжёлой каменной плите, которая плавала на ртути в бассейне в подвале здания. Ориентируя этот прибор либо плечом L1 либо плечом L2 вдоль направления движения Земли, не удалось наблюдать какого-либо различия в его показаниях (это различие должно было выразиться в смещении интерференционных полос, наблюдаемых в зрительную трубу), т.е. не удалось измерить скорость V движения Земли в межпланетном пространстве.

C. Проблема правильной физической интерпретации преобразований Лоренца.

Проблема измерения скорости эфирного ветра в оптических экспериментах получила новое своё развитие в последней четверти XIX в., когда было открыто, что свет имеет электромагнитную физическую природу, что оптика является только частью другой более фундаментальной и более глубокой физической науки-электродинамики.

Основы электродинамики сформулировал Максвелл в своём знаменитом “Трактате” в 1873 г., играющем такую же основополагающую роль в электродинамике, как «Принципы» Ньютона в механике. В этом труде были сформулированы знаменитые уравнения Максвелла и была высказана гипотеза об электромагнитной природе света - что свет является электромагнитными волнами, - которая в 1888 г. была подтверждена Г. Герцем, экспериментально открывшим электромагнитные волны радио- и СВЧ- диапазона.

В теории Максвелла впервые в истории науки связывались между собой электрические и магнитные явления с оптическими явлениями. Упругий эфир Френеля превратился, таким образом, в носителя электромагнитных возмущений и электромагнитных волн, т.е. стал электромагнитным эфиром, а электрические и магнитные поля напряжённости и индукции стали рассматриваться как показатели напряжений и деформаций этого эфира.

Максвелл представлял себе электрические и магнитные поля и электромагнитные волны механически - как возмущения гипотетической, хотя и очень своеобразной, но всё же чисто механической сплошной среды, наделённой особыми механическими свойствами; при этом он считал, что эфир в пустоте и эфир в веществе имеют различные механические свойства.

Сам Максвелл считал, что его уравнения справедливы только для покоящегося эфира, возмущениями которого являлись, по его представлениям, рассматриваемые им электромагнитные поля и волны. Систему отсчёта, в которой эфир покоится Максвелл связывал с абсолютной системой отсчёта Ньютона.

Уравнения Максвелла составлены для четырёх векторных функций: E(x,y,z,t), D(x,y,z,t) - напряжённости и индукции электрического поля, H(x,y,z,t), B(x,y,z,t) - напряжённости и индукции магнитного поля. Эти функции характеризуют возмущение неподвижного электромагнитного эфира. Изменяющиеся со временем электрическое и магнитное поля не могут существовать по отдельности - они образуют единое электромагнитное поле, представляющее собой электромагнитные, в частности оптические волны.

Уравнения Максвелла имеют следующий вид:

rot E = -дB / дt   ,  rot H = j + дD / дt   ,   div D = р   ,   div B = 0,

где j=j(x,y,z,t) - объёмная плотность элекрического заряда.

Как видим, уравнения Максвелла предполагают, что координаты x,y,z и время t описываются в некоторой системе отсчёта, которая, по предположению Максвелла является системой отсчёта, в которой невозмущённый электромагнитный эфир покоится.

Попытками распространить уравнения Максвелла на произвольно движущиеся материальные прозрачные среды, которые как предполагалось в соответствии с гипотезой Френеля каким-то образом увлекали с собой эфир, занимались многие крупные физики последней четверти XIX в., но, пожалуй, больше всех Г.А. Лоренц.

Исследуя выведенные им на основе его электронной теории уравнения Максвелла для движущейся среды, Лоренц в 1895 г. пришёл к удивительному результату, что с точностью до членов первого порядка малости по v/c, где v-скорость движения системы отсчёта, c-скорость движения электромагнитных волн, эти уравнения Максвелла можно строго математически преобразовать к виду уравнений Максвелла для неподвижной среды, т.е. он строго доказал, что уравнения Максвелла «не чувствуют» поступательного движения системы отсчёта, если только она движется с постоянной скоростью.

Лоренц получил тем самым объяснение отрицательных результатов проведённых к тому времени экспериментов, показывающих, что с помощью оптических и электродинамических эффектов первого порядка по v/c, производимых с земными источниками света, невозможно определить скорость движения Земли относительно межпланетного пространства Ньютона.

Чтобы объяснить остающийся, однако, необъяснённым отрицательный результат эксперимента Майкельсона - Морли второго порядка малости по v/c Лоренц и независимо Фицджеральд выдвинули знаменитую гипотезу о сокращении всех тел, движущихся в абсолютном пространстве вдоль направления движения в отношении, зависящем от скорости движения .

Если Lо - длина покоящегося тела, L-длина движущегося тела вдоль направления движения ,то, согласно этой “гипотезе сокращения”,

где b=, v/c v -скорость движения тела.

Чтобы объяснить невозможность определения скорости v тела, равномерно и прямолинейно движущегося относительно абсолютного пространства в оптических и электродинамических экспериментах ,не только первого, но и второго, и более высоких порядков по v/c, Лоренц доказал в своей работе по электродинамике движущихся сред (1904 г.) строгую математическую теорему, что уравнения Максвелла в покоящейся и движущейся инерциальных системах отсчета имеют математически совершенно одинаковый вид ,с точностью до членов и первого ,и второго, и более высоких порядков по v/c включительно .Он установил ,что они инвариантны. При этом Лоренц при преобразовании уравнений Максвелла от одной инерциальной системы отсчета к другой преобразовывал также и время t, вводя математически совершенно формально так называемое “локальное время”:

t¢=t- x

где x,t -координата и время в покоящейся системе отсчета.

В результате теоретических исследований Лоренца и проведённого Майкельсоном и Морли эксперимента естественно возникал электродинамический принцип относительности ,сформулированный Галлилеем ещё в XVII в.

Правда сам Лоренц этот принцип не провозгласил. Это сделали на основе его работ и в особенности его работы 1904 г. сначала Пуанкаре ,а немного позже и независимо Эйнштейн в 1905 г.

Согласно механическому принципу относительности ,проводя различные механические эксперименты в лаборатории, движущейся с постоянной скоростью относительно покоящейся абсолютной лаборатории, невозможно измерить ее скорость движения. (Все механические явления в обеих лабораториях происходят совершенно одинаково).

Согласно электродинамическому принципу относительности, нельзя определить скорость движения указанной движущейся лаборатории, производя в ней также и всевозможные электродинамические, в том числе оптические эксперименты. (Все электродинамические явления в обеих лабораториях происходят совершенно одинаково).

Как мы уже сказали, очень четко обобщенный общефизический принцип относительности, об инерциальных системах отсчета, впервые сформулировал Пуанкаре в 1904 г. за год до формулировки этого принципа Эйнштейном в 1905 г. и появления основополагающей в специальной теории относительности его знаменитой работы 1905 г. Пуанкаре ещё с начала 90-х годов XIX в. интересовался теорией Лоренца и работал над её развитием.

Основные преобразования инвариантности -так называемые преобразования Лоренца:

были опубликованы Лоренцем в 1904 г. в упомянутой работе.

Пуанкаре понял, что преобразования, найденные Лоренцем, составляют группу преобразований инвариантности четырехмерного пространства-времени, координатными осями которого являются пространственные оси x,y,z и ось времени t. Он же назвал преобразования, найденные Лоренцем, ”преобразованиями Лоренца”.

В знаменитой работе 1905 г. Эйнштейн сформулировал независимо от Пуанкаре общефизический принцип относительности для инерциальных систем отсчёта и, как он сам утверждал и как это часто утверждают другие, дал физически единственно правильную интерпретацию формулам преобразования Лоренца.

Эйнштейн заявил. что преставление о времени. которое существовало в физике со времён Галилея и Ньютона, ошибочно, что его надо исправить, т.е. строгим формальным образом определить, что такое “время”. Это его утверждение основывалось на предложенном им в работе 1905 г. кинематическом, т.е. в отличие от работ Лоренца никак не связаны с электродинамикой, выводе формул преобразований Лоренца, выведенных, как Эйнштейн считал, только из правильного, предложенного им в этой работе понимания понятия времени.

Родившаяся с появлением работы Эйнштейна 1905 г. так называемая  специальная теория относительности оказалась исключительно полезной в физике микромира и стала широко использоваться в бурно развивавшихся в XX в. атомной физике, ядерной физике и физике элементарных частиц, т.е. в микрофизике.

Вообще считается, что в физике XX в. имеется только два главных фундаментальных теоретических достижения: теория относительности и квантовая механика.

4.2. Понятия абсолютного и относительного механического  движения у Ньютона

В настоящее время в классической механике и во всех технических науках без каких-либо особых оговорок широко используется введённое Ньютоном в “Принципах” в 1687 г. представление об абсолютном движении, т.е. о движении тела или системы тел в абсолютно пустом пространстве ,т.е. относительно этого пространства при течении абсолютного времени. Считается ,что природа состоит из тел, движущихся или покоящихся в пустом пространстве. Само пространство неподвижно. О его движении говорить просто бессмысленно. Эти совершенно чёткие представления об абсолютном времени требуют ,однако ,серьёзных физических разъяснений.

Необходимо хорошо понимать, что при непосредственно экспериментальном исследовании механического движения или состояния покоя тела мы всегда подразумеваем (неявно, неосознанно) достаточно массивные твёрдые тела, относительно которых отсчитываем положение частей тела, системы тел ,малого тела в различные моменты времени ,мы подразуемые и некоторый определённый конкретный измеритель времени, т.е. часы.

Другими словами, при экспериментальном изучении механического движения мы всегда имеем некоторую вполне определённую «систему отсчета», под которой понимаются как все массивные тела ,относительно которых мы отсчитываем положение нашего движущегося или покоящегося тела, так и конкретный используемый в экспериментах измеритель времени.

Эту мысль часто выражают словами: движение относительно, или движение по природе своей относительно.

Пример: 1)Космонавты в космическом корабле в качестве естественной для себя системы отсчета используют систему ,жёстко связанную со стенками космического корабля, и обычные, механические или электронные часы, имеющиеся на борту.

2)Для нас, людей на Земле, имеется естественная система отсчета, жёстко связанная с неподвижными телами на поверхности Земли, или, что тоже самое ,жёстко связанные со стенами лаборатории. Это так называемая лабораторная система отсчета .В качестве измерителя времени используют лабораторные часы.

Отмечая относительный характер механического движения и необходимость фиксации определённой системы отсчёта ,обязательно надо давать себе отсчет в том, что различные система отсчёта физически и механически вовсе не равноправны.

Другими словами, механические движения тел в различных системах отсчёта происходят по-разному, по разным математическим и физическим законам.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21