рефераты

рефераты

 
 
рефераты рефераты

Меню

Реферат: Разработка конструкции и технология изготовления дублирующего устройства управления учебным автомобилем рефераты

первые два двухчасовые подготовительные и одно четырехчасовое заключительное (стокилометровый марш), Основываясь на этом, при выборе маршрутов надо исходить из того, что их протяженность должна увеличиваться от одного упражнения к другому и тем самым обеспечивать постепенный рост средней скорости вождения автомобиля в составе колонны. Поэтому протяженность маршрута для первого двухчасового упражнения целесообразно иметь в среднем 10 км, а для второго— 30 км.

Все три Маршрута могут проходить по одному и тому же направлению или по разным, по замкнутому кругу или до определенного пункта с поворотом в обратную сторону. Предпочтение следует отдавать маршрутам, проходящим по одному и тому же направлению, что позволит курсантам лучше их освоить и чувствовать себя более уверенно при совершении стокилометрового марша. На каждом маршруте должны быть определены места построения и вытягивания колонны, исходный пункт и пункты регулирования, места привала и разворота для движения в обратном направлении.

На каждый маршрут должна быть составлена своя маршрутная карта. Кроме того, нужно иметь общую схему маршрутов.

3.6. УЧЕБНЫЕ АВТОМОБИЛИ

Для обучения вождению можно использовать только те автомобили, которые по своему техническому состоянию и оборудованию полностью отвечают требованиям правил дорожного движения. На каждом из них должны быть установлены номерные знаки, выдаваемые Государственной инспекцией безопасности дорожного движения. Присвоенный грузовому учебному автомобилю номерной знак дополнительно наносят на заднюю стенку кузова: высота цифр—не менее 300 мм, ширина—не менее 120 мм, толщина штриха.—30 мм, размеры букв —2/3 от размера цифр. Этот знак должен быть хорошо различимым

Кроме того, на любом автомобиле, предназначенном для обучения вождению, спереди и сзади устанавливают специальные опознавательные знаки — равносторонний треугольник белого цвета (сторона 200—300 мм в зависимости от вида транспортного средства) с каймой красного цвета (ширина каймы—1/10 стороны), в которой вписана буква «У» черного цвета. А для того чтобы инструктор мог в критических случаях взять на себя управление автомобилем и исправить ошибку обучаемого, автомобили оборудуют двойным управлением для сцепления и тормозов. В целях безопасности обучения вождению и контроля за работой курсанта для инструктора;с правой стороны автомобиля крепят дополнительное зеркало заднего вида.

Помимо комплекта шоферского инструмента на автомобиле должны быть лопата, топор, буксирный трос, материалы для ремонта шин, медицинская аптечка, огнетушитель, а в зимнее время—цепи противоскольжения.

          Эксплуатация исправного и полностью укомплектованного автомобиля способствует качественному проведению занятий, воспитывает у курсанта бережливое отношение к государственному имуществу, прививает любовь к технике и профессии водителя автомобиля.

Для отработки первоначальных упражнений по пуску и остановке двигателя, троганию и переключению передач на месте на учебном автомобиле необходимо заранее «вывешивать» ведущие колеса.

Так как обучение вождению трехосного автомобиля должно осуществляться только с грузом (загружается на 3/4 номинальной грузоподъемности), целесообразно этот груз постоянно содержать на автомобилях в специально сделанных контейнерах. Груз в виде чугунных чушек, в таре (мешках, ящиках) и тем более насыпной

потребует значительного времени на его погрузку и раз-грузку.

На время обучения вождению в составе колонны в правой части ветрового стекла кабины и в левом верхнем углу заднего борта кузова мелом наносят порядковый номер автомобиля. Для управления колонной на марше с помощью световых сигналов на задней стенке кабины каждого автомобиля крепят самодельный трехсекционный фонарь (с красным, белым, зеленым цветами) обращенный в сторону следующего сзади автомобиля. Управляют им при помощи трех переключателей пульта устанавливаемого в кабине. От пульта отходит восемь проводов — шесть к фонарю и два к источнику питания. Последние подключаются к розетке или один — к ампер, метру, а другой—к «массе».

Качество отработки элементов вождения по трудным грунтам зависит от наличия и состояния цепей противоскольжения, трековых дорожек, матов и средств самовытаскивания


4. РАЗРАБОТКА КОНСТРУКЦИИ
ДУБЛИРУЮЩЕГО УСТРОЙСТВА УПРАВЛЕНИЯ

4.1. ОПРЕДЕЛЕНИЕ РАСЧЕТНОЙ НАГРУЗКИ НА ВАЛ, ВОЗВРАТНЫЕ ПРУЖИНЫ И ПЕДАЛИ.

Номинальное усилие на дополнительные педали  тормоза и сцепления будет находиться в пределах 5-10кГс,то есть 50-100Н. Во время работы могут возникать кратковременные нагрузки до 200Н. При нажатии на педаль сцепления или тормоза возникает вращающий момент, который сообщается валу. Длина наибольшего рычага педалей  L=280мм=0,28М. Величина вращающего момента при кратковременных перегрузках

                      

                                         Lmax=F·L=200·0, 28=56Нм

За расчетный момент следует приять момент на 10%-20% больше максимального, то есть расчет ведется с запасом прочности:

T=Tрасч=(1,1 … 1,2)Тмах=

=(1,1 … 1,2)56=61,6 …67,2Нм

Для дальнейшего расчета принимаем Т=65Нм.

Рычаги педалей воспринимают поперечную нагрузки при нажатии на педали с силой F. При этом рычаг моно рассматривать как консольную балку, на одном конце которой приложена поперечная сила F, на втором конце возникает изгибающий момент и реакция в виде силы R .Размеры рычагов будем определять по основной нагрузке , от  которой возникают наибольшие напряжения. Такой нагрузкой будет момент, изгибающий рычаг, который по величине равен вращающему моменту на валу

М = Т =  65Нм

Передача движения от рычага к валу осуществляется с помощью шлицевого соединения. Применение шпоночного соединения, более простого в изготовлении, в данном случае невозможно, так как оно требует больших габаритов и не позволяет регулировать положение педали в пространстве. Шлицевое соединение представляет собой выступы на валу, называемые шлицами или зубьями, которые входят в соответствующие пазы ступицы. В зависимости от формы зубьев различают соединения с прямозубными, эвольвентными и треугольными шлицами.

        Шлицевые соединения могут быть подвижными и неподвижными. В данном случае необходимо обеспечить неподвижное соединение между ступицей педали и валом. Шлицевое соединение имеет ряд достоинств по сравнению со шпоночными:

        -большую несущую способность при одинаковых габаритах из-за значительно большей рабочей поверхности и равномерного распределения давления по высоте зубьев;

        -большую усталостною прочность вала из-за меньшей концентрации напряжений;

        -обеспечивает более точное центрирование ступицы по валу.

        При установке дополнительных педалей на автомобиль возникает необходимость относительной регулировки положения ступицы, поэтому следует применять такое соединение, которое имеет наибольшее число зубьев. Такому требованию наиболее полно отвечают соединения с треугольным профилем зубьев, которые, как правило являются неподвижными и используются при стесненном диаметральном габарите.

        Основными геометрическими параметрами являются:

    - число зубьев Z, которое может быть от 20 до 70 ;

    - модуль     m=dδ/z .величина которого колеблется от 0.2 до 1,5 миллиметров; 

    - угол впадин 90о 72о  и 60о .

        Нормали автомобильной и тракторной  промышленности предусматривают числа зубьев 32 и 48 ;

        угол впадин 2αв=90о  ;

        номинальные диаметры D=5 … 75 миллиметров.

Центрирование соединения осуществляется только по боковым сторонам шлицев.

        Шлицевые соединения реагируют на снятие :

σ =2Т/(dc ∙ z ∙ h ∙ l ∙ ψ) ≤[σсм] ;

где σсм - расчетное напряжение снятия на рабочих поверхностях шлицев;

Т - расчетный передаваемый вращающий момент, Т = 65 Н∙м;

dc – средний диаметр шлицевого соединения, для шлицев треугольного профиля dc=dδ=m∙z ;

h – высота поверхности контакта шлицев, для принятого соединения

h= Dв - da / z ;

da – номинальный внутренний диаметр отверстия в ступице; Dв – наружный диаметр зубьев вала ;

ψ = 0,75 – коэффициент, учитывающий неравномерность распределения нагрузки между шлицами ;

l – длина поверхности контакта шлицев, принимаемая равной длине ступицы;

[σсм] – допускаемое напряжение на смятие материала вала или ступицы, для неподвижного соединения без термической обработки шлицев при изготовлении вала и ступицы из среднеуглеродистых сталей  величина

 [σсм] =  100 … 110МПа для среднего режима работы , при легком режиме работы значения этих напряжений увеличивают на 25 … 40% ,при тяжелом режиме их необходимо снизить на 35 … 50%.

        Возвратные пружины предназначены для возврата педалей в исходное положение после снятия с них нагрузки. При нажатии на дополнительную педаль в обычном режиме необходимо усилие 5 …10кГ ,это складывается из усилия, идущего на перемещение основных педалей тормоза или сцепления и усилия на дополнительное закручивание возвратной пружины. В конце хода дополнительной педали это усилие достигает максимальной величины. При проектировании возвратных пружин принимают , что на дополнительное закручивание пружины расходуется 20 …30% энергии. Для дальнейшего расчета принимаем, что25% от усилия ноги на педаль идет на дополнительное закручивание пружины, обозначим через Fпр эту часть усилия ноги.

Fпр = 0,25F = 0,25 ∙ 19 = 2,5 кГс = 25 Н

Вращающий момент ,который дополнительно закручивает возвратную пружину:

Тпр = Fпр ∙ L = 25 ∙ 0,28 = 7 Н∙м

4.2. ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ВАЛА.

Вал предназначен для передачи вращающего момента от дополнительных педалей сцепления и тормоза к основным.

        Валы предназначены для передачи вращающего момента и поддержания деталей на них, в отличие от оси, которая вращающий момент не передаёт. Валы работают на кручение и изгиб, оси только на изгиб.

        При проектном расчете вала известны :

        - крутящий момент Т или мощность Р ;

        - частота вращения  n ;

        - нагрузка и размеры основных деталей, расположенных на валу (например, зубчатых колёс ,а в данном случае дополнительных педалей). Требуется определить размеры и материал вала.

        Валы рассчитывают на прочность, жесткость и колебания. Основной расчетной нагрузкой являются моменты  Т и М , вызывающие кручение и изгиб. Влияние сжимающих или растягивающих сил обычно мало и не учитывается. Расчет осей является частным случаем расчета валов при Т = 0.

        Для выполнения расчета вала необходимо знать его конструкцию (места приложения нагрузки, расположения опор и т.п) В то же время разработка конструкции вала невозможна без хотя бы приближенной оценки его диаметра. На практике обычно используют следующий порядок проектного расчета вала:

        Предварительно оценивают средний диаметр вала из расчета на кручение при пониженных допускаемых напряжениях :

d =3√ (T/ (0,2[ζ]))

Обычно принимают [ζ] = ( 20 … 30 )МПа

Требуемый диаметр вала:

d ≥ 3√(65∙103 / (0,2 ∙ 25)) = 23,513мм

Окончательный диаметр вала будет установлен при расчете шлицевого соединения.

Проектный расчет вала.

d≥23,513мм

4.3. РАСЧЕТ ШЛИЦЕВОГО СОЕДИНЕНИЯ.

Задаемся для шлицевого соединения прямоугольного профиля числом зубьев z = 36 ,так как наименьший диаметр вала должен быть больше или в крайнем случае равен 23,513мм; то номинальный внутренний диаметр отверстия в ступице должен быть около 24мм , а средний или делительный диаметры шлицов будут лежать в пределах dср≈dδ=24,5 … 25,5мм при модулях m=0,2 … 1,5мм принятых для шлицев треугольного профиля по нормам автомобильной и тракторной промышленности.

Требуемый модуль для шлицев

m=dδ /z=(24,5 … 25,5)/36=0,68 … 0,708мм

Принимаем для шлицевого соединения стандартный модуль m=0,7мм.  Номинальный делительный диаметр шлицов – зубьев треугольного профиля

dδ =m·z=0,7 · 36=25,2

Угол впадин по нормам принимают dαb=90º ,так как передача вращения осуществляется боковыми гранями шлицов ,по которым происходит центрирование соединения, угол вершин зубьев по нормалям следует принять 2α=80º .

Шаг зацепления:

Pt= π·m = 3.14·0,7 =2,199мм

Толщина зуба (шлица) по делительному диаметру  при 2α=80º

St=(Pt ·2α)/(2αb+2α)=(2,199 ·80º)/(90º+80º)=1,0218мм

Ширину впадины втулки по делительному диаметру

Lt= PT - St = 2,199 – 1,0218 = 1.177мм

Диаметр впадин зубьев во втулке

dа2=dδ+1,6m=25,2+(1,6 · 0,7)=26.31мм

Диаметр вершин зубьев вала

da1=dδ +1,25m=25,2+(1,25·0,7)=26,05мм

Радиальный зазор между вершиной зуба и впадиной втулки

c1=0,5(dа2-dа1)=0,5(21,31-26,05)=0,13мм

Требование c≤0,2m=0,2·0,7=0,14мм выполнено.

Диаметр впадин зубьев (шлицов) у вала

df z=dδ-1,8m=25,2-1,8∙0,7=23,917мм

Диаметр вершин зубьев у втулки

df 2=dδ-1,5m=25,2-1,5∙0,7=24,15мм

Радиальный зазор между вершенной зуба втулки и впадиной вала

c2=0,5(df 2-df 1)=0,5(24,15-23,9)=0,125мм

Уточняем средний расчетный диаметр зуба

dср=(da1 -da2)/2=(26,05+24,15)/2=25,1мм

Длина поверхности контакта зубьев принимаем равной длине ступицы втулки                                               

lст=31мм

За расчетную длину принимаем 

lр=31мм

Шлицевые соединения выходят из строя из за повреждений рабочих поверхностей : износа, смятия, заедания. Основными напряжениями, разрушающими шлицы являются напряжения смятия. Условием прочности соединения будет

ссм ≤ [σсм]

Допускаемые напряжения [σсм] зависят от материалов вала и втулки, их термической обработки

Расчет шлицевых соединений проводят обычно как проверочный.

σсм=2Т/(de∙z∙h∙L∙ψ)

Где h – высота поверхности шлицев.

h = (dа1 - df2)/2 = (26,05 – 24,15)/2 = 0,9мм ,

ψ – коэффициент, учитывающий неравномерность распределения нагрузки между шлицами

ψ = 0,7 … 0,8

Длярасчетов принимаем среднее значение ψ = 0,75

σсм = (2 ∙65∙103)/(25,1∙36∙0,95∙30∙0,75) = 67,3 МПа

Условие прочности выполнено:

σсм<[σсм] = 110МПа

Расчет шлицевых соединений регламентирован ГОСТ 21425 – 75 , Которым следует пользоваться при более точных расчетах.

4.4. ВЫБОР МАТЕРИАЛОВ
ДЛЯ ИЗГОТОВЛЕНИЯ ВОЗВРАТНЫХ ПРУЖИН.

Материал для пружин должен иметь высокие и стабильные свойства. Делать пружины из материалов низкой прочности нецелесообразно. Масса геометрически подобных пружин при заданной нагрузке и упругом закручивании обратно пропорциональна квадрату допускаемого напряжения. Это связано с тем, что пружины из менее прочного материала в целях сохранения заданной жесткости приходится делать повышенных диаметров и, следовательно, витки их нагружены большими моментами, чем пружины из более прочных материалов. Эффективность применения высокопрочных материалов для пружин связана также с меньшей концентрацией напряжений в пружинах, чем в деталях с различными переходами, и меньшими размерами сечений витков.

Основными материалами для пружин являются: высокоуглеродистые стали 65, 70, 75, 80; марганцовистые 55ГС, 65Г; кремнистые 50С2, 60С2, 60С2А, 70С3А; хромомарганцовистые40ХГ, 50ХГА; хромованадиевая 50ХФА; кремневольфрамистая 65С2ВА и кремнийникелевая 60С2Н2А.

Для пружин, работающих в химически активной среде, применяют проволоку из бронз ,БрКЗМц1, БрО4ц3.

Диаметры проволоки стандартизированы ГОСТ 14958 – 75, материал для пружин оговорен ГОСТ 14959 – 75.

Высокоуглеродистые стали наиболее дешевы и имеют широкое распространение для пружин с размерами до 15мм. Марганцовистые,.кремнистые и хромомарганцовистые стали обладают более высокими механическими свойствами, лучшей прокатываемостью, что позволяет их успешно использовать для пужин с размерами сечений витков до 20мм, а хромомарганцовистые – до 30мм.

Хромованадиевая сталь характеризуется высокими механическими свойствами, особенно высоким пределом выносливости, теплостойкостью и хорошими технологическими свойствами, поэтому ее применяют для особенно ответственных пружин, в частности для клапанных пружин двигателей внутреннего сгорания. Во избежании коррозии пружины кадмируют или покрывают другой коррозийно стойкой пленкой.

Пружины с небольшим размером сечения проволоки до 8мм изготавливают холодной навивкой, пружины с большим сечением проволоки навивают в горячем состоянии.

Большинство пружин холодной навивки изготавливают из проволоки, прошедшей термическую обработку до навивки, а после навивки пружину подвергают только отпуску. Все пружины горячей навивки и наиболее ответственные пружины холодной навивки, в частности, из большинства легированных сталей, подвергают закалке в горячем состоянии.

Проволока стальная углеродистая для пружин холодной навивки без последующей закалки, имеющая наибольшее применение в машиностроении, регламентирована по ГОСТ 9383-75, проволоку диаметром до 8мм выпускают трех основных классов: нормальной прочности-3 класс; повышенной прочности-2 класс; высокой прочности- 1 класс.

Возвратные пружины будут находиться на валах, связывающие дополнительные педали тормоза и сцепления с основными.

Пружины имеют особые прицепы для придания пружине закручивающего момента. По своей конструкции пружины кручения аналогичны пружинам растяжения и сжатия; только их во избежание трения навивают с небольшим просветом между витками в пределах 0,4 … 1,5мм.

При нагружении пружины в каждом сечении действует момент М , равный внешнему моменту Т , закручивающему пружену. Вектор этого момента направлен вдоль оси пружины, который раскладывается на момент, изгибающий виток МИ=М∙cos α, и момент Т=М∙sin α.

В связи с тем, что в пружинах кручения также , как и в пружинах растяжения и сжатия, угол подъема витков мал, обычно менее 12 …15º , поэтому допустимо вести расчет витков только на изгиб с моментом МИ = Т и пренебречь кручением.

Наибольшее напряжение изгиба витков, имеющее место на внутренней поверхности. и условие прочности:

σмах=(K∙M)/ WИ ≤ [σИ]

Страницы: 1, 2, 3, 4, 5, 6, 7