рефераты

рефераты

 
 
рефераты рефераты

Меню

Реферат: Теория рефераты

где П - площадь p-n-перехода (в зависимости от площади перехода барьерная емкость может изменяться от единиц до сотен пикофарад); x - диэлектрическая проницаемость полупроводникового материала; Nд - концентрация примеси; U - напряжение на переходе.

Значение барьерной емкости колеблется от десятков до сотен пФ. При постоянном напряжении на переходе барьерная емкость определяется отношением , а при переменном .

Особенностью барьерной емкости является то, что она изменяется при изменении напряжения на переходе (рис. 1.2); изменение барьерной емкости при изменении напряжения может достигать десятикратной величины, то есть эта емкость нелинейна, и при увеличении обратного напряжения барьерная емкость уменьшается, так как возрастает толщина запирающего слоя (площадь p-n-перехода).

Рис. 1.2. Зависимость барьерной емкости от напряжения

В силовых полупроводниковых приборах площадь p-n-перехода делается большой, поэтому у них велика величина барьерной емкости. Такие полупроводниковые диоды называют плоскостными. Если такой прибор использовать, например, для выпрямления переменного напряжения высокой частоты в постоянное, то барьерная емкость, зашунтировав переход, нарушает его одностороннюю проводимость, то есть переход теряет выпрямительные свойства, поэтому частотный диапазон плоскостных диодов ограничивается промышленными частотами. Но барьерная емкость может быть и полезной: приборы с явно выраженными емкостными свойствами (варикапы) используются для электронной перестройки контуров.

У точечных p-n-переходов площадь перехода мала, поэтому барьерная емкость невелика и частотный диапазон гораздо шире, чем у плоскостных.

Диффузионная емкость отражает перераспределение носителей в базе:

где t  - время жизни носителей; Iпр  - прямой ток через диод.

Значение диффузионной емкости колеблется от сотен до тысяч пФ.

Диффузионная емкость также нелинейна и возрастает с увеличением прямого напряжения. Образование этой емкости схематично можно представить следующим образом. Эмиттером будем считать p-область, а базой n-область. Носители из эмиттера инжектируются в базу. В базе вблизи перехода происходит скопление дырок - объемный положительный заряд, но в это время от источника прямого напряжения в n-область поступают электроны, и в этой облаcти, ближе к внешнему выводу, скапливается отрицательный объемный заряд. Таким образом, в n-области наблюдается образование двух разноименных зарядов "+Qдиф" и "-Qдиф". При постоянном напряжении эта емкость рассматривается как отношение абсолютных значений заряда и контактной разности потенциалов (прямого напряжения):

,

а при переменном

.

Так как вольт-амперная характеристика перехода нелинейна, то с увеличением внешнего напряжения прямой ток растет быстрее, чем прямое напряжение на переходе, поэтому и заряд "Qдиф" растет быстрее, чем прямое напряжение, и диффузионная емкость тоже увеличивается.

Диффузионная емкость является причиной инерционности полупроводниковых приборов при работе в диапазоне высоких частот и в режиме ключа, так как процесс накопления и особенно рассасывания объемного заряда требует затраты определенного времени.

На рис. 1.3, а, б и рис. 1.4, а, б даны упрощенные эквивалентные схемы полупроводникового перехода (простейшего диода) на низких и высоких частотах.

На низких частотах сопротивления диффузионной и барьерной емкостей очень велики и не оказывают шунтирующего действия на переход, поэтому они не подлежат учету.

а)                                             б)

 


Рис. 1.3. Эквивалентные схемы перехода на низких частотах: а - для диффузионной емкости (Сдиф);  б - для барьерной емкости (Сбар).

Сопротивление емкости в общем случае

                                                                                              (1.7)

где rp-n - сопротивление прямосмещенного p-n-перехода; rобр - сопротивление обратносмещенного p-n-перехода (rобл< rпр<< rобр); rобл - суммарное сопротивление n- и p-областей и контактов этих областей с выводами.

 а)                                                             б)

 


Рис. 1.4. Эквивалентные схемы перехода на высоких частотах: а - для диффузионной емкости (Сдиф);  б - для барьерной емкости (Сбар).

Диффузионная емкость значительно больше барьерной, но использовать ее для практических целей нельзя, так как она зашунтирована малым сопротивлением прямосмещенного p-n-перехода.

Импульсные диоды используют в качестве ключевых элементов в устройствах с микросекундной и наносекундной длительностью импульсов
(рис. 1.5).

Важным параметром при этом будет время восстановления обратного сопротивления tвос - интервал времени от момента переключения до момента, когда обратный ток уменьшается до заданного уровня отсчета; при подаче на диод запирающего импульса ток не может мгновенно уменьшиться до нуля, так как в базе образовался объемный заряд и на его рассасывание требуется определенное время. Этим и объясняется выброс обратного тока в цепи диода (рис. 1.5, б).

а)                                                                             б)

 


Рис. 1.5. Диод в импульсном режиме: а - схема простейшего ключа;

 б - временные диаграммы входного напряжения и тока через диод

1.3. Переход металл-полупроводник

Эффект, полученный на основе такого контакта получил название эффекта Шоттки. Сущность эффекта заключается в следующем.

Процессы в переходе металл-полупроводник находятся в прямой зависимости от работы выхода электронов. Под работой выхода электрона подразумевается та минимальная энергия, которую надо сообщить электрону, чтобы он мог выйти из металла или из полупроводника. На рис. 1.6 приведены структуры переходов металл-полупроводник с разной работой выхода электронов: Ам  - работа выхода электронов из металла; АП - работа выхода электронов из полупроводника.

На рис. 1.6 (при Ам < АП) переход металл-полупроводник не обладает выпрямляющими свойствами, так как при таких условиях будет преобладать выход электронов из металла и при любой полярности напряжения на переходе сопротивление слоя полупроводника будет малым, поскольку этот слой обогащен основными носителями. Такой контакт (невыпрямляющий) используется во всех полупроводниковых приборах в месте соединения области с внешним выводом и его называют омическим.

На рис.1.6 (при АП < Ам) переход также не обладает выпрямляющими свойствами, так как из полупроводника в металл выходит гораздо большее количество электронов, чем в обратном направлении, и в приграничном слое образуется область, обогащенная основными носителями-дырками.

Рис. 1.6. Структуры переходов металл-полупроводник с разной

работой выхода электронов

Эта область имеет низкое сопротивление независимо от полярности напряжения внешнего источника.

На рис. 1.6 (при АП < Ам) большая часть электронов из полупроводника будет переходить в металл, создавая в приграничном слое полупроводника обедненный основными носителями слой. Этот слой будет иметь большое сопротивление и в зависимости от полярности приложенного напряжения будет меняться высота потенциального барьера, поэтому такой переход обладает выпрямляющими свойствами.

Особенности перехода Шоттки:

1. На переходе таких приборов создается значительно меньшее падение напряжения (0,2-04 В), чем на электронно-дырочном переходе (рис. 1.7): при прохождении даже небольшого начального тока через контакт с большим сопротивлением на нем выделяется тепловая энергия, способствующая появлению дополнительных носителей.

2. Отсутствие инжекции неосновных носителей заряда.

3. Переходы работают только на основных носителях, следовательно, в приборах, изготовленных на основе эффекта Шоттки, практически отсутствует диффузионная емкость, связанная с накоплением и рассасыванием носителей.

Рис. 1.7. ВАХ диода Шоттки (ДШ) и обычного диода

4. Отсутствие диффузионной емкости существенно повышает быстродействие приборов, поэтому диоды, выполненные на основе такого контакта, обладают значительно лучшими переключающими свойствами, чем диоды на основе контакта полупроводник-полупроводник.

Обладая высоким быстродействием, диоды Шоттки широко используются в цифровой технике (например, логика ТТЛШ).

Пример. Если оба перехода в биполярном транзисторе окажутся под прямым напряжением, то есть перейдут в режим двойной инжекции, то в базе накапливается большой объемный заряд, на рассасывание которого требуется определенное время. Транзистор переходит в режим глубокого насыщения, и его быстродействие заметно снижается. Чтобы предотвратить это, нельзя допускать прямосмещенного состояния коллекторного перехода. С этой целью коллекторный переход шунтируется диодом Шоттки   (рис. 1.8); падение напряжения на диоде Шоттки составляет 0,2-0,4 В, следовательно, на коллекторном переходе устанавливается низкий уровень прямого напряжения, при котором невозможна заметная для режима ключа инжекция носителей из коллектора в базу и тем самым исключается глубокое насыщение транзистора, а его быстродействие повышается. На рис. 1.8 участок «диод Шоттки и коллекторный переход» транзистора выделены пунктиром. В схеме использован транзистор n-p-n-структуры. Напряжение на входе имеет прямоугольную форму: на входе чередуются импульсы высокого и низкого уровней. Эмиттерный переход транзистора отпирается при высоком уровне
 входного сигнала и запирается при низком.

  Рис. 1.8. Электронный ключ с диодом Шоттки

1.5. Выпрямительные низкочастотные диоды в блоках питания

1.5.1. Блоки питания на выпрямительных диодах

Источниками питания называются устройства, предназначенные для снабжения электронной аппаратуры электрической энергией и представляющие собой комплекс приборов, которые вырабатывают электрическую энергию и преобразуют ее к виду, необходимому для нормальной работы каждого узла электронной аппаратуры (рис. 1.9).

Рис. 1.9. Общая структурная схема источника питания

Основными звеньями выпрямительного устройства являются трансформатор и вентильный комплект; вспомогательными - фильтр и стабилизатор постоянного напряжения.

Трансформатор служит для преобразования переменного напряжения в переменное такого значения, которое необходимо для получения на выходе источника питания заданного постоянного напряжения.

Вентиль - это прибор, имеющий несимметричную характеристику проводимости, малое сопротивление для прямого тока и большое сопротивление для обратного. С помощью вентиля переменное напряжение преобразуется в пульсирующее.

Фильтр предназначен для сглаживания пульсаций выпрямленного напряжения.

Стабилизатор - это схема, которая отслеживает все изменения напряжения со стороны входа и выхода и поддерживает постоянным напряжение на нагрузке.

В настоящее время в электронных устройствах наиболее часто исполь- зуются следующие схемы выпрямителей:

однофазные (однополупериодные (ОПВ - рис. 1.10, а), двухполупериодные (ДПВ с нулевым выводом и мостовая - рис. 1.10, б, в соответственно);

многофазные (с нулевым выводом, мостовые - схема Ларионова).

1.5.2. Параметры выпрямителей с любым характером нагрузки

Характер нагрузки на выходе выпрямителя определяется или самой нагрузкой, или первым элементом фильтра (фильтр может быть любой сложности).

7. Коэффициент пульсаций Кп (характеризует степень приближения кривой выпрямленного напряжения к прямой линии).


Параметры выпрямительных устройств:

1. Действующее значение напряжения на вторичной обмотке трансформатора U2.

2. Амплитудное значение напряжения на вторичной обмотке трансформатора U2мах.

3. Среднее значение выпрямленного напряжения на нагрузке U0.

4. Среднее значение выпрямленного тока в нагрузке I0.

5. Действующее значение напряжения пульсаций на нагрузке Uп.

6. Максимальные изменения напряжения на нагрузке DUвых.

7. Коэффициент пульсаций Кп (характеризует степень приближения кривой выпрямленного напряжения к прямой линии).

8. Коэффициент сглаживания Кс (это параметр фильтра).

9. Коэффициент полезного действия выпрямителя h.

10. Амплитудное значение тока через диод.

11. Обратное напряжение на диоде - наибольшая разность потенциалов, приложенная к диоду в тот момент времени, когда он не пропускает тока.

Во всех схемах выпрямителей активный характер нагрузки, то есть

сглаживающие фильтры отсутствуют.

1.5.4. Выпрямительные устройства

с простым емкостным фильтром на выходе

1.5.4.1. Анализ работы схемы и основные соотношения в ней

Назначение конденсатора на выходе выпрямителя - сглаживать пульсацию в выпрямленном напряжении. При подключении конденсатора фильтра характер нагрузки становится емкостным.

Наличие конденсатора в схеме выпрямителя (рис.1.12, а) существенно меняет режим работы полупроводниковых диодов: напряжение на конденсаторе (рис. 1.12, б) в определенный момент времени делает потенциал катода диода больше потенциала анода и диоды запираются (моменты времени t2 и t4). С момента времени с t2 по t3 диоды заперты и находятся под обратным напряжением, а с t1 по t2 и с t3 по t4 диоды открыты. При наличии
С-фильтра диод переходит в режим прерывистого тока, следовательно, режим диода в прямом направлении становится более напряженным, особенно в момент включения, когда конденсатор еще не заряжен: за короткий промежуток времени (с t3 по t4) ток через диод должен успеть достичь максимального значения и уменьшиться до нуля.

Емкость конденсатора фильтра выбирается из условия, чтобы ее сопротивление по переменной составляющей тока было значительно меньше сопротивления нагрузки (хотя бы в 5–10 раз).

Заряд, который получает конденсатор за время t1 - t2, t3 - t4,

                                              а)                                                              б)

 


Рис. 1.12. ДВП с простым С-фильторм: а -  схема ДПВ, б - временная диаграмма напряжения на нагрузке Uн = f(t)

Заряд, который получает конденсатор за время t1 - t2, t3 - t4,

Заряд, который конденсатор теряет за время t2 - t3, t4...,

Отрезок времени, на котором происходит разряд конденсатора, оказывается близким к половине периода входного напряжения выпрямителя.

По условию стационарности процесса заряда и разряда (= )

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9