рефераты

рефераты

 
 
рефераты рефераты

Меню

Реферат: Техника СВЧ рефераты

Реферат: Техника СВЧ

1. ВВЕДЕНИЕ

1.1 Технико-экономическое обоснование проекта

Общее кризисное состояние всей экономики страны еще в боль­шей степени относится к технике СВЧ, так как она в основном питалась военными заказами. Поэтому в настоящее время основной задачей этой области техники является развитие применений ее в мирных целях. Эти применения могут быть связаны с переработкой информации (телевидение, связь, новые направления в медицине и биологии) и с преобразованием энергии (ускорители заряженных частиц, нагрев плазмы, диэлектриков, преобразование солнечной энергии). Наиболее важным в настоящий момент являются применения, направленные на развитие новых технологий и новых производств. Это прежде всего касается использование СВЧ для нагрева диэлектриков в различных целях.

Наиболее широкая область применения техники СВЧ - ее исполь­зование в бытовых целях, например производство магнетронов для бытовых микроволновых печей. Однако в этой области иностранные фирмы ушли далеко вперед и без серьезных вложений наша промыш­ленность не сможет с ними конкурировать.

В этих условиях более целесообразным представляется развитие технологических применений более мощных приборов СВЧ (более кВт), в создании и производстве которых наша страна занимает передовые позиции. Для разнообразных технологических процессов (сушки, размо­раживания, вулканизации, пастеризации, спекания, разрушения твердых веществ, обжига и многих других) требуется мощность от единиц до сотен киловатт в непрерывном режиме. Применение микроволн позво­ляет оптимизировать технологический процесс, достичь высокого ка­чества продукта при минимальных энергозатратах и меньшей металлоем­кости технологического устройства. Использование электроэнергии позволяет разумно и эффективно тратить природные энергоресурсы (газ, нефть, уголь), не нанося дополнительного экологического вреда. Наиболее экономично применение более коротковолнового диапазона, так как мощность, выделяемая при нагреве диэлектрика пропорциональна частоте.

Специфическим требованием к приборам для промышленного применения отвечают мощные магнетроны непрерывного действия. Они относительно дешевы, обладают высоким КПД, сравни­тельно просты в эксплуатации и устойчивы к изменениям согласования с нагрузкой. Однако в коротковолновом  диапазоне (12.5см) и при мощно­стях свыше 1кВТ они обладают рядом недостатков, обусловленных особенностью их работы. В указанном диапазоне длин волн не выпускают магнетроны мощностью свыше 10 кВт. Ограничения по мощности в магне­тронах связаны с тем, что потери выделяются непосредственно на аноде и катоде, которые образуют пространство взаимодействия. Размеры пространства взаимодействия ограничены длиной волны. Вследствие обратной бомбардировки катода сокращается срок службы прибора. При мощностях свыше 1кВТ необходимо водяное охлаждение. Это создает неудобства в эксплуатации и сокращает срок службы из-за выхода из строя каналов охлаждения.

В связи с указанным недостатком магнетронов для технологиче­ских целей стали разрабатывать многорезонаторные клистроны. У кли­стронов продольный размер коллектора не связан с длиной волны. Поэтому при мощностях до 10 кВт может быть использовано воздушное охлаждение. Применение воздушного охлаждения предпочтительнее также в связи с тем, что горячий воздух используется для дополнитель­ного подогрева продукта. Разрабатываемые клистроны имеют мощность 25-50 кВт при КПД=45-50% в диапазоне 2450 МГц [1]. Наибольшие успехи достигнуты в создании многолучевых клистронов . Клистроны , разработанные отечественной промышленностью позволили достигнуть больших успехов в снижении ускоряющего напряжения и стоимости. По сравнению с магнетронами многолучевые клистроны позволяют значительно увели­чить долговечность и выходную мощность в коротковолновом диапазоне (12.5см) при тех же, что и у магнетронов, величинах КПД и напряжениях. Однако даже многолучевые многорезонаторные клистроны уступают магнетронам по габаритам, весу, стоимости. Эти недостатки связаны с большим количеством резонаторов. Во многом количество резонаторов определяется стремлением получить большие значения коэффициента усиления и полосы, а в случае автогенератора их число может быть уменьшено.

Для технологических целей возможно применение автогенерато­ров вместо усилителей. При этом требования полосы и усиления отпа­дают и становится целесообразной разработка автогенераторных кли­стронов с малым числом резонаторов и большим КПД. Также автогенера­торы будут лишены упомянутых недостатков по сравнению с магнетро­нами, а отмеченные выше преимущества клистронов тогда более ярко проявляются. Однако выпускаемые до сих пор одно- и двухрезонаторные клистроны имеют в лучшем случае КПД около 30%, а обычно значительно ниже.

В связи со сказанным возникает задача заменить применяемый в многорезонаторных клистронах процесс преобразования постоянного электрического тока в переменный с помощью каскадного группирования другим эффективным процессом, не требующим большого количества резонаторов.

Эффективное группирование может происходить в результате взаимодействия электронов с полем резонатора при больших углах полета и больших амплитудах напряжения. При этом вместо большого числа резонаторов может быть использовано всего два или даже один резонатор, что позволяет снизить габариты, массу и стоимость приборов.

До сих пор нет сведений о создании хотя бы экспериментальных приборов, использующих протяженные пространства взаимодействия в резонаторах. Для создания таких приборов, на кафедре электронных приборов в течении последних лет, были проведены расчет и анализ электронных процессов при больших углах пролета.

Основная задача этих работ состоит в повышении примерно в два раза (на 25-30%) КПД однорезонатарных и двухрезонаторных клистронов и доведения КПД примерно до 60%.

В соответствии со сказанным определяются следующие основные этапы настоящей работы:

Проведение аналитического обзора по опубликованным работам и проведенным на кафедре электронных приборов.

Ознакомление с методами расчета электронных электродинамических процессов, внесение уточнений при выборе вычислительных параметров и развитие этих методов в связи с возникающими задачами.

Расчет и анализ электронных процессов, что является  основной задачей проекта.

Рассмотрение принципов построения генераторов и эскизное проектирование прибора.

В современных условиях разработка новых приборов должна вестись с использованием максимального числа уже разработанных узлов и деталей, поэтому проектирование прибора ведется на базе разработанной в НИИ "Исток" многолучевой электронно-оптической системы. Последние обстоятельство определило данные проектируемого прибора. Подводимая мощность определяется параметрами двадцатичетырехлучевой ЭОС с микропервеансом одного луча Рм=0.3 мкА/В3/2 и напряжением U0=8 кВ, Р0=41 кВт. При общем КПД не менее 55% выходная мощность составляет 22-25 кВт. Диаметр пролетного канала 3.5 мм, коэффициент заполнения 0.6 при идеализированных условиях в пролетном канале. Расчет проводился на частоте 2450 МГц.

Дипломный проект носит чисто исследовательский характер, поэтому количественно определить экономический эффект невозможно.

2. АНАЛИТИЧЕСКИЙ ОБЗОР

2.1. Взаимодействие электронного потока с входным резонатором.

Эффективность взаимодействия электронов с полем зазора резонатора принято характеризовать коэффициентом электронного взаимодействия M:

 где q - угол пролета электронов во входном зазоре.

Из этого выражения следует, что лучшее взаимодействие будет происходить при q близком к нулю. Рассмотрение процессов с точки зрения осуществления прибора в целом приводит к заключению, что желательно получение максимальной величины М2r, где  - характеристическое сопротивление резонатора. Почти во всех приборах, в которых происходит взаимодействие электронов с полем зазора, используются углы пролета q1£p/2, так как при этом величина М близка к 1, а М2r»mах на рис.2.1 обозначена область I значений q, обычно применяемых в приборах.

Но параметр М не является единственным, по которому следует определять рабочую область. Очень важна относительная величина первой гармоники конвекционного тока I1max/I0 . Надо стремиться получить это значение наибольшим для получения хорошего КПД прибора. Также важным  фактором является КПД зазора, который пропорционален электронной проводимости с обратным знаком. Особенно это очевидно для схем автогенераторов, в которых первый резонатор самовозбуждается. В дальнейшем, вероятно, более целесообразно использовать  другие параметры, характеризующие электронный ток и его взаимодействие с СВЧ полем. Можно использовать коэффициент качества, включающий относительную величину минимальной скорости электронов.


Рис.1. Зависимости электронного тока, коэффициента взаимодействия и электронной провидимости и КПД от угла пролета.


 Также, сгруппированный  поток можно характеризовать распределением тока I и скоростей электронов v внутри потока рис.2.2. Эта методика будет учитывать не только степень группирования электронов, но и скоростное распределение электронов в потоке. Это обстоятельство очень важно, так как эффективность торможения электронов в выходном зазоре лучше, если сначала идут медленные электроны, а затем быстрые. Такое распределение позволяет равномерно затормозить электроны без выбрасывания части электронов назад.

Еще в сороковых годах в ряде работ отмечалось возможность повышения электронного тока при наличии широкого входного зазора в сочетании с большой амплитудой напряжения на этом зазоре. Таким образом, кроме указанной области I на рис.2.1 возможно использовать еще области II и III перспективные для создания приборов. До сих пор эти области для создания приборов не использовались и задача настоящей работы состоит в исследовании электронных процессов в этих областях и проектирование новых приборов на их основе.

Увеличение I1max/I0  клистрона происходит при изменении формы кривой, по которой сообщается скоростная модуляция электронов. Если бы скорости изменялись не по синусоидальному закону, а линейно, то можно было бы собрать в одном сечении все электроны с периода и тогда КПД был бы близок к 100%. Однако получить пилообразное напряжение на зазоре резонатора нельзя. Можно приблизиться к этому закону, если одновременно на электронный поток воздействовать напряжением первой и второй гармоник. На рис.2.3 приведена  диаграмма напряжения на зазоре первых двух гармоник и их суммы. Из рисунка видно, что область фаз эффективного группирования для двухчастотной модуляции значительно больше, чем при одночастотной модуляции. Эта идея может быть реализована различными способами.

Были созданы многорезонаторные клистроны, имеющие один или два резонатора, настроенных на вторую гармонику.

Рис.2.3. К описанию электронного потока с помощью распределения тока и скоростей.

Рис.2.3 Изменение скоростей электронов при взаимодействии с полями первой  и второй гармоник и их суммы.

y - область фаз эффективного взаимодействия

Можно создать такой резонатор, у которого имелись бы две собственные частоты, равные первой и второй гармонике электронного тока.

Другой способ, исследуемый в данной работе пока не нашел практического применение основан на том, что при переменном напряжении на входном зазоре, большем постоянного напряжения, тогда скоростная модуляция будет уже несинусоидальная и содержит вторую гармонику.

Появление второй гармоники можно объяснить исходя из закона сохранения энергии :

eU = eUo + eUmMsinwt,

 где Um - амплитуда переменного напряжения

       U0 - ускоряющее напряжение

 eUmM = eUoUm/UoM = eUo2n ,

где - коэффициент скоростной модуляции.

 Из закона сохранения энергии :

Таким образом, n = no(1 + 2vsinwt)1/2

Раскладывая выражение в скобках в ряд получим :

(1 + 2nsinwt1)1/2 = 1 + nsinwt - 1/2n2sin2wt

При Um<<Uo - n мало и третьим членом в формуле можно пренебречь. При Um»Uo третьим членом уже пренебрегать нельзя, т.е. появляется вторая гармоника и скоростная модуляция не будет чисто синусоидальной.

В работах Гебауэра [2] теоретически обосновывалось повышение электронного КПД автогенераторных клистронов с одним двухзазорным коаксиальным резонатором до 50%. При этом предполагалось использовать коаксиальные резонаторы “p“-вида с широким входным зазором при больших амплитудах. Теоретически выводы основывались на кинематическом представлении процессов фазовой фокусировки 12 электронов на периоде, т.е. при весьма грубых приближениях.

Повышение относительного значения первой гармоники электрического тока I1max/I0   при времени пролета равным или большем половины периода отмечено в работе [3]. Когда время пролета через зазор равно или больше половины периода, скоростная модуляция становится несинусоидальной.

После упомянутых работ Гебауэра наиболее полное и систематическое исследование процессов при взаимодействии электронов с полем широкого зазора было дано Солимаром [4]. При этом он использовал аналитическую теорию, которая может давать и неточные результаты после перегона. Из многочисленных кривых приведенных Солимаром можно отметить следующие результаты, в которых значение I1max/I0  превышает соответствующие значения при узких зазорах.

при         к=10       D=1800                 a=0.9     bрZ=300                I1max/I0 =1.3

при к=10               D=1800                 a=1.5      bрZ=200                I1max/I0 =1.4

при         к=5         D=1800                  a=1.5     bрZ=40-900           I1max/I0 =1.4

при к=10               D=2880                  a=1.5     bрZ=70-800           I1max/I0 =1.45

при         к=20 D=5400        a=0.9     bрZ=70-900           I1max/I0 =1.3

при к=20               D=5400                  a=1.5     bрZ=360                 I1max/I0 =1.36

где к=w/wp,

wp - электронно-плазменная частота

D=wd/vo - угол пролета, где

d - ширина зазора bр=wp /vo

Z -текущая координата

a=v1/vo

На рис.2.4 приведены некоторые кривые из работ Л.Солимара, по которым можно проследить изменение I1max/I0  при изменении к,D,a, bр,Z.

Результаты исследований по рассматриваемой теме приводит в своей книге А.З.Хайков [5]. Он пишет, что используя достаточно протяженный зазор входного резонатора и большое напряжение на нем, можно добиться увеличения I1max/I0  по сравнению со значением, характерным для узких зазоров. Практически такую возможность повышения КПД целесообразно использовать в двухрезонаторных клистронах-автогенераторах, так как в усилителе на двухрезонаторном клистроне подобный режим привел бы наряду с ростом КПД к резкому уменьшению усиления . Графики на рис.2.5 показывают как изменяется величина максимальной относительной амплитуды первой гармоники тока I1max/I0  и расстояние между центрами зазоров L12  в зависимости от угла пролета во входном зазоре q1.

Первые расчеты для широких зазоров на основе дискретной модели электронного потока [6] показали лишь небольшое увеличение относительной величины тока первой гармоники I1max/I0 =1.26. Однако в последующие расчеты на основе дискретной модели подтвердили возможность увеличения I1max/I0  до 1.5 [7]. Кроме того было показано, что влияние пространственного заряда может улучшить качество группирования.  Исследования, проводимые на кафедре ЭП, показали, что в сравнительно простом по конструкции клистроне можно получить КПД не менее 50% [8].

Среди работ посвященных исследованию электронных процессов в широком зазоре можно отметить статью А.И.Костиенко и Ю.А.Пирогова, опубликованную в 1962г [9], хотя авторы этой статьи решают поставленный вопрос с иных позиций. Рассмотрена возможность взаимодействия электронного потока с электромагнитным полем СВЧ волны в широком плоском зазоре с эффективностью не хуже чем в узком зазоре. Взаимодействие происходит в поле волны H11 (расстояние между сетками сравнимо с длиной волны). При достаточно большой плотности входящего в зазор тока в промежутке между сетками может возникнуть неотрицательный минимум потенциала, а следовательно, распределение статического потенциала вдоль зазора будет нелинейным (рассмотрен случай с квадратным распределением). Модуляция потока электронов по скорости будет близка к синусоидальной. Изменение скоростей электронов под действием поля СВЧ тем больше, чем больше нелинейность распределения. Мощность взаимодействия потока электронов с электромагнитным полем СВЧ может принимать как положительные так и отрицательные значения, т.е. такая система может быть использована для генерирования, усиления и детектирования колебаний

N 1 2 3 4
k

10

20

30

10

a

1.5

0.9

1.5

1.5

D

2880

5400

5400

1800

рис.2.4.   Зависимости первой гармоники электронного тока от bрZ при различных парметрах.

Страницы: 1, 2, 3, 4, 5