рефераты

рефераты

 
 
рефераты рефераты

Меню

Реферат: Разработка устройства Видеопорт рефераты

В качестве материала для производства печатной платы выбираем стеклотекстолит с двусторонним фольгированным слоем и толщиной печатного проводника равной 35 мкм  –  СФ-2-35  –  для изготовления двусторонних печатных плат.

В данное время стеклотекстолит наиболее распространенный материал для изготовления печатных плат, имеет хорошие технологические и эксплуатационно-технологические свойства, среди которых:

-      широкий диапазон рабочих температур  (-60…+105°С),

-      низкое водопоглащение  (0.2…0.8 %),

-      большое объемное и поверхностное сопротивления (1010…1013 Ом),

-      стойкость к короблению,

-      повышенная жесткость и прочность.

Толщину печатного проводника выбираем равной 35 мкм по ряду причин:

1)    между толщиной печатного проводника и его шириной существует тесная зависимость. Если уменьшать толщину, то соответственно будет увеличиваться ширина проводника, а вместе с ней и размеры всей печатной платы.

2)    необходимо, чтобы печатный проводник выдерживал токи, текущие в схеме, что также зависит от толщины печатных проводников. Подробней об этом описывается в разделе 4.2.

3)    чем меньше толщина фольги, тем меньше расход материала и ниже стоимость печатной платы.

СФ-2-35 обладает следующими характеристиками по ГОСТ 10316-78:

1)    удельное поверхностное сопротивление  ρS = 1010…1011 Ом

2)    удельное объемное сопротивление ρV = 1011…1013 Ом*см

3)    диапазон рабочих температур  -60…+105°С

4)    диэлектрическая проницаемость  ε = 6

5)    прочность  отделения  3-х  мм  полоски  фольги  от  диэлектрического основания   σ = 4Н

Предпочтительные толщины для стеклотекстолита по ГОСТ 10316-78:

     1.0; 1.5; 2.0 мм.

Исходя из данных табл.3 видно, что лучшая величина  (11 мм) достигается при толщине пластины  1.5 мм  и  2.0 мм. Выбираем первую, так как она дешевле в производстве. Итак, толщину печатной платы берем равной 1.5 мм.

Номинальная толщина листа,  мм Стрела прогиба и коробление на длине 1 м,  мм

1.0

1.5

2.0

22

11

11

Таблица 3.  Деформационные качества стеклотекстолита.

4.5     Компоновка, размещение и установка ЭРЭ и ИМС на плате.

В соответствии с техническим заданием адаптер реализуется на одной печатной плате.

Размещение элементов производится таким образом, чтобы электрические соединения были минимальной длины, но при этом должен обеспечиваться III-й класс точности печатного монтажа. Кроме того, элементы необходимо располагать как можно более равномерно по площади печатной платы для обеспечения равномерности масс элементов. Также, желательно устанавливать элементы таким образом, чтобы обеспечить наибольшую технологичность платы, т.е. монтажные отверстия следует располагать рядами. Это делается для ускорения операции сверления на программируемых сверлильных станках, а также для обеспечения автоматической установки элементов на печатную плату и их групповой пайки.

Рекомендации по размещению элементов устройства на плате можно свести к следующим:

-      функциональные узлы должны быть размещены компактно;

-      узлы, непосредственно связанные с видеосигналом нужно разместить по возможности дальше от генератора;

-      элементы регулировки должны иметь как можно более короткие провода подключения;

-      цепи связи с компьютером должны быть подальше от цепей видеосигнала;

Разъемы следует установить по краю печатной платы со стороны задней панели корпуса устройства.

Расстояние между двумя соседними микросхемами равно размеру корпуса микросхемы, так что тепловой режим конструкции будет в норме. Исходя из вышеприведенных соображений выбираем вариант установки элементов по ОСТ 4.ГО.010.030-81:

Резисторы R1...R9 устанавливать по варианту III.

Кварц Q1 устанавливать по варианту Vв.

Конденсаторы С1...С20 устанавливать по варианту IIа.

Микросхемы D1...D23 устанавливать по варианту VIIIа.

Диоды VD1-VD9 устанавливать по варианту IIа.

4.6     Выбор и обоснование метода изготовления печатной платы.

В настоящее время применяют несколько методов изготовления ПП:

-      субтрактивные, при которых проводящий рисунок образуется за счет удаления проводящего слоя с участков поверхности, образующих непроводящий рисунок,

-      аддитивные, при которых проводящий рисунок получают нанесением проводящего слоя заданной конфигурации на диэлектрическое основание платы,

-      полуаддитивный, при котором проводящий рисунок получают нанесением проводящего слоя на основание с предварительно нанесенным тонким проводящим покрытием, впоследствии удаляемым с участков поверхности, образующих непроводящий рисунок,

В соответствии с ГОСТ 23751-86 конструирование печатных плат следует осуществлять с учетом следующих методов изготовления:

- химического для односторонних печатных плат и гибких печатных кабелей;

- комбинированного позитивного для ДПП, ГПП;

- электрохимического (полуаддитивного) для ДПП;

- металлизации сквозных отверстий для МПП;

Все рекомендуемые методы (кроме полуаддитивного) являются субтрактивными.

Исходя из вышеизложенных рекомендаций необходимо выбрать, либо электрохимический (полуаддитивный) метод, либо комбинированный позитивный метод.

Электрохимический метод в данном случае нам не подходит, так как его применяют для изготовления ДПП с высокой плотностью токопроводящего рисунка. В данном методе используется нефольгированный диэлектрик СТЭФ.1-2ЛК с обязательной активацией его поверхности или диэлектрик с фольгой 5 мкм. Учитывая эти данные, приходим к выводу, что данный метод значительно дороже комбинированного позитивного метода, и кроме того, из-за высокой плотности токопроводящего рисунка и малой толщины фольги, сопротивление печатных проводников будет большим, что в нашем случае нежелательно.

Учитывая вышеизложенное, приходим к выводу, что в нашем случае лучше использовать комбинированный позитивный метод. Этот метод обеспечивает хорошую адгезию элементов проводящего рисунка к диэлектрическому основанию и сохранение электроизоляционных свойств диэлектрика, защищенного во время обработки платы в агрессивных химических растворах медной фольгой.

Исходным материалом для комбинированного способа служит фольгированный с двух сторон диэлектрик, поэтому проводящий рисунок получают вытравливанием меди, а металлизация отверстий осуществляется посредством химического меднения с последующим электрохимическим наращиванием слоя меди.

Позитивный комбинированный метод обеспечивает III-й класс точности печатного монтажа и лучшие, по сравнению с другими методами, диэлектрические свойства плат.

Травление меди производится растворами на основе хлорного железа. Эти растворы допускают утилизацию меди из отработанного травителя, а также регенерацию самого травителя. Боковое подтравливание проводников– минимально.

С учетом всех перечисленных достоинств этот метод в настоящее время является основным в производстве двусторонних и многослойных печатных плат для аппаратуры самого разнообразного назначения. Метод хорошо отработан на производстве и является оптимальным при серийном выпуске.

4.7     Выбор защитного покрытия печатной платы.

В качестве защитного покрытия выбираем полиуретановый лак УР-231 светло-коричневого цвета.  В  отличии  от  других  лаков, таких как СБ-1с (стойкость к периодическому воздействию минерального масла, бензина и воды) и К55 (устойчив к кислотам, нефтепродуктам), он обладает более низкой стоимостью, но худшими защитными характеристиками, а так как данное устройство предназначено для работы в стационарных условиях, то этим можно пренебречь. Лак обеспечивает повышенную электроизоляцию, выдерживает температуру от –60 до +120˚С. Лак представляет собой твердое и прочное покрытие.

 

5.    Трассировка соединений.

5.1   . Расчет элементов печатного монтажа.

Конструктивно-технологический расчет ДПП с учетом произведенных погрешностей рисунка, проводящих элементов, фотошаблонов, базирования, сверления, экспонирования и т.д. по  ОСТ 4.010.019-81,  ГОСТ 23751-86.

Координатную сетку располагаем в соответствии с ГОСТ 2.417-78.

Элементы проводящего рисунка располагаем от края платы, неметаллизированного отверстия, паза, выреза и т.д. на расстоянии не менее толщины платы, с учетом допуска на линейные размеры.

Диаметры монтажных и переходных отверстий должны соответствовать ГОСТ 10317-79.

Расчет:

1)    Минимальный размер переходного отверстия:

Dпо = Rдт*Нпп,

где

Rдт = 0.33

(отношение диаметра металлизированного отверстия к толщине ДПП)

Нпп = (1.5+0.035*2) = 1.57 мм

(толщина изолирующего слоя, плюс толщтна   2-х слоев меди)

Dпо = 0.33*1.57 = 0.5181 мм

Из   ряда   диаметров   переходных   отверстий   по  ГОСТ 10317-79  выбираем Dпо =  0.8 мм

2)    Минимальный диаметр монтажного отверстия:

Dмо = Dв + ∆ + 2*Нг + ∆D,

где

             Dв = 0.5 мм

             (максимальный диаметр вывода используемых ЭРЭ)

             ∆ = 0.1 мм

             (зазор между выводом ЭРЭ и монтажным отверстием)

             Нг = 0.035 мм

             (толщина слоя меди)

             ∆D = 0.1 мм

             (погрешность диаметра отверстия)

Dмо = 0.5 + 0.1 + 0.035*2 + 0.1 = 0.77 мм

По ГОСТ 10317-79 выбираем диаметр монтажного отверстия  Dмо = 0.8 мм

3)    Минимальное значение ширины проводника:

t = tмд + | ∆tно |,

где

             tмд = 0.25 мм

             (минимально допустимая ширина проводника)

             ∆tно = -0.1 мм

             (нижнее предельное отклонение ширины проводника)

t = 0.25 + | -0.1 | = 0.35 мм

4)    Минимальное значение расстояния между элементами проводящего рисунка:

S = Sмд + ∆tво,

где

             Sмд = 0.25 мм

            (минимально допустимое расстояние между элементами проводящего рисунка)

∆tво = 0.1 мм

(верхнее предельное значение отклонения ширины проводника)

S = 0.25 + 0.1 = 0.35 мм

5)    Минимальный диаметр контактной площадки для металлизированного отверстия

D = Dмо + ∆Dво + 2*bн + ∆tво + бd + бр + ∆tно,

где

             Dмо = 0.8 мм   (расчет выше)

             (диаметр монтажного отверстия)

                   ∆Dво = 0 мм

                   (верхнее предельное значение отклонения диаметра отверстия)

                   bн = 0.1 мм

                   (гарантийный поясок)

                   ∆tво = 0.1 мм

                   (верхнее предельное значение отклонения ширины проводника)

                   бр = 0.15 мм

            (диаметральное значение позиционного допуска расположения контактных площадок относительно номинального положения)

бd = 0.08 мм

            (диаметральное значение позиционного допуска расположения центров отверстий относительно номинального положения)

∆tно = 0.1

(нижнее предельное отклонение ширины проводника)

                        D = 0.8 + 0 + 2*0.1 + 0.1 + 0.08 + 0.15 + 0.1 = 1.43

            Выбираем диаметр контактной площадки согласно  ОСТ 4.010.019-81:

            D = 1.5 мм

6)    Минимальное расстояние между центрами отверстий для прохождения одного проводника:

L = D + t + 2*Sмин + б1,

где

D = 1.5 мм   (расчет выше)

(минимальный диаметр контактной площадки)

t = 0.35 мм

(минимальная ширина проводника, расчет выше)

Sмин = 0.25 мм

(минимально допустимое расстояние между проводниками (III-й класс точности)

б1 = 0.05 мм

(диаметральное значение позиционного допуска расположения проводника относительно номинального положения)

                   L = 1.5 + 0.35 + 0.25*2 + 0.05 = 2.4 мм

            Так как полученное расстояние  L = 2.4 < 2.5 (расстояние между ножками микросхемы), то выбранный нами III-й класс точности печатного монтажа соответствует требованиям.

         Конструктивно–технологический расчет печатных плат производился с учетом производственных погрешностей рисунка проводящих элементов, фотошаблонов, базирования, сверления, экспонирования и т.д. по ГОСТ 23751 – 79,

ГОСТ 10317 – 79, ОСТ 4ГО.010.030, ОСТ 4.010.019 – 81.

           

5.2     Расчет электрических параметров схемы.

1)    Оценим необходимую ширину проводника сигнальной цепи:

bпр > ( l*ρ*I ) / ( hф*Uп ),

где

                  ρ = 0.05  Ом*мм2 / м

                  (удельное сопротивление проводника)

                  l = 15 см  (взято с избытком)

                  (максимальная длина проводника)

                  I = 130 мА

                  (максимальный ток в проводнике)

                  hф = 0.035 мм

                  (толщина проводника)

                  Uп = 0.4 В

                  (величина помехоустойчивости ИС)

bпр > ( 320*10-3 *0.05*10-6 *130*10-3 ) / ( 35*10-6 *0.4 ) = 149 мкм

Для III-его класса точности минимальная ширина проводника  0.25 мм, а следовательно удовлетворяет условию  bпр = 0.25 > 0.149.

2)    Рассчитаем сопротивление металлизированного переходного отверстия:

Rпо = ( ρ*hмо ) / ( 2π*r*hм ),

где

                  ρ = 0.05  Ом*мм2 / м

                  (удельное сопротивление проводника)

hмо = 1.5 мм

(высота металлизированного отверстия)

r = 0.4 мм   (расчет выше)

(внешний радиус отверстия)

hм = 0.035 мм

(толщина металлизации)

Rпо = ( 0.05*10-6 *1.5*10-3 ) / ( 2*3.14*0.4*10-3 *35*10-6 ) = 85.3*10-3 Ом

Так как сопротивление очень мало, то его можно не учитывать.

3)    Оценим необходимую ширину проводника для цепей земли и питания:

bпр > ( l*ρ*I ) / ( hф*0.01*Uп ),

где

                  ρ = 0.05  Ом*мм2 / м

                  (удельное сопротивление проводника)

                  l = 10 см 

                  (длина проводника)

                  I = 1.1 А

                  (наибольший ток в схеме)

                  hф = 0.035 мм

                  (толщина проводника)

                  Uп = 5 В

                  (напряжение питания устройства)

bпр > ( 30*10-3 *0.05*10-6 *1.1 ) / ( 35*10-6 *0.01*5 ) = 0.94 мм

Из полученного значения видно, что выбранная ранее величина соответствует расчетной  bпр = 1 > 0.94 мм.

4)    Емкость и индуктивность между печатными проводниками:

Взаимная емкость:

С = ( 0.12*10-12 *ε*l ) / ( lg[2*d / ( h + b )] ),

где

               ε = 5.8

(диэлектрическая проницаемость диэлектрика, покрытого лаком  [1])

                  l = 8 см 

                  (максимальная длина проводника)

                  h = 0.035 мм

                  (толщина проводника)

d = 0.25 мм

(минимально допустимое расстояние между проводниками (III-й класс точности)

             b = 0.25 мм

             (ширина проводника)

            C = ( 0.12*10-12 *5.8*0.08 ) / ( lg[2*0.25 / ( 0.035 + 0.25 )] ) = 0.22 пФ

Взаимная индуктивность:

М = 2*l*( 2.3*lg[ 2*b / (d + b) ] + (d + b) / l +1)*10-9,

где

                  l = 8 см 

                  (максимальная длина проводника)

d = 0.25 мм

(минимально допустимое расстояние между проводниками (III-й класс точности)

             b = 0.25 мм

               (ширина проводника)

М = 2*0.08*( 2.3*lg[ 2*0.25 / (0.25 + 0.25) ] + (0.25 + 0.25)* 10-3 / 0.08 +1)*10-9 = = 0.16 мкГн

5.3    Проверочные расчеты и оценка помехоустойчивости.

Расчет сопротивления изоляции параллельных проводников

, где

RП – поверхностное сопротивление изоляции.

, где

ρП = 1011 Ом – удельное поверхностное сопротивление стеклотекстолита.

LЗ = 0,25 мм – зазор между параллельными проводниками.

Lmax = 90 мм – наибольшая длина параллельных проводников.

RОБ – объемное сопротивление изоляции.

для проводников на разных сторонах печатной платы

 для проводников на одной стороне печатной платы.

ΡОБ = 1013 Ом * м – удельное объемное сопротивление стеклотекстолита.

Н = 1,5 мм – толщина печатной платы.

TП = 0,25 мм – ширина сигнального проводника.

SПР = lmax * tП = 90 мм * 0,25 мм = 22,5 мм2 – площадь проекции печатных проводников друг на друга.

Т.к. полученное сопротивление изоляции между двумя параллельными соседними проводниками превышает более чем в 1000 раз входное сопротивление ИС, то его влиянием можно пренебречь при выбранном зазоре между проводниками.

Время задержки распространения сигнала

, где

Страницы: 1, 2, 3