рефераты

рефераты

 
 
рефераты рефераты

Меню

Эффективность методов борьбы с асфальтосмолистыми парафиновыми отложениями в условиях НГДУ Нурлатнефть рефераты

Компонентный состав и структура современных АСПО значительно отличаются от традиционных описанных в литературе и справочной информации парафиновых отложений 60-70-х годов. Отметим основные особенности АСПО 90-х годов:

Чрезвычайно широкая гамма компонентного состава по объектам эксплуатации, не только по площадям, скважинам, но даже по месту выпадения в лифте одной скважины;

Резкое увеличение смолисто-асфальтеновых компонентов, что обусловливает увеличение поверхностей активности, адгезии и снижение отмываемости АСПО;

Значительные структурные изменения в АСПО, превалируют составы эмульсионного типа с повышенным адгезионными и когезионными силами взаимодействия;

Увеличение содержания мехпримесей и связанной воды, что увеличивает прочность структурного каркаса отложений и обусловливает трудноудаляемость их с поверхности металлического оборудования.

Возникает необходимость ориентирования на химреагенты комплексного действия с деэмульгирующим свойствами.

Таким образом, по мере разработки нефтяных месторождений на поздних стадиях начинают проявляться ряд факторов объективного, природного характера, осложняющие ситуацию в решении парафиновой проблемы и снижающие эффективность традиционных мероприятий.

3.3 Методы используемые в НГДУ “Нурлатнефть” по предотвращению отложений АСПО

3.3.1 Механические методы борьбы с АСПО и технология работ при их применении

Группа механических методов борьбы с парафином заключается в периодическом соскабливании его с поверхности НКТ. Для этой цели была создана целая гамма скребков различной конфигурации постоянного и переменного сечения, опускаемых в НКТ на проволоке специальной лебедкой. Созданы скребки, укрепляемые на штангах, известны «летающие» скребки и скребки-центраторы.

Скребки переменного сечения были выполнены так. что при движении вниз они уменьшают свой диаметр, что обеспечивает им свободный проход даже при наличии на стенках труб отложений парафина. При подъеме скребка один из ножей под действием сил, мешающих движению вверх (наличие парафиновых отложений) перемещается вниз, увеличивая режущий диаметр ножей, и срезает отложившиеся асфальто-смолистые вещества.

АДУ — автоматическая депарафинизационная установка, осуществляющая подъем и спуск скребка в скважину. Одной из конструкций, получивших широкое применение в свое время, являлась установка АДУ-3.Ими оснащались фонтанные и скважины, эксплуатируемые УЭЦН

Дальнейшим усовершенствованием методов борьбы с парафином было применение летающих скребков конструкции УфНИИ. Принцип действия их состоял в том, что они оснащались ножами-крыльями, складывающимися при движении вниз и раскрывающимися при движении вверх.

Перед спуском летающего скребка в насосно-компрессорных трубах устанавливался нижний амортизатор сбрасываемого типа, состоящий из подпружиненного кольца и корпуса с плашками. Последний фиксируют в стыке труб на необходимой глубине. Второй амортизатор – верхний, устанавливался на буферной задвижке фонтанной арматуры взамен лубрикатора.

Движение вниз заменялось под действием собственного веса, вверх струей движущейся жидкости. При этом раскрывшиеся ножи соскабливали парафин с НКТ. Переключение движения на ход вверх или вниз происходило при воздействии скребка на концевой нижний или верхний амортизатор. Было установлено, что минимальными дебитами, при которых летающие скребки нормально работали, были 45-50 т/сут, а давление на буфере – 0,5-1,0 Мпа.

Верхняя предельная величина дебита 180-200 т/сут и буферное давление - 4,5-5,0 Мпа.

Летающие скребки получили ограниченное в применение из-за ряда осложнений. К ним относились постоянные остановки скребков из-за заклинивания в парафиновых отложениях, стыках труб или искривлениях колонны, избежать которых было практически невозможно.

В отдельных скважинах они работали удовлетворительно и могут сегодня использоваться в арсенале средств борьбы с парафином. Скребки для скважин, эксплуатируемых УШГН, могут выполнятся фигурными или пластинчатыми. На каждой штанге укрепляется до 8 скребков .Существенным недостатком пластинчатых скребков является способ их крепления.Он состоит в приварке пластины к хомуту, охватывающему штангу. При этом предполагается, что сварка не повредит штангу, а удерживаться пластина в заданном месте будет за счет деформации хомута при охлаждении.

На самом деле в процессе сварки нагревается и штанга, что, наверняка, вызывает изменении в структуре металла. Кроме того, имеют место случаи их сползания с места установки.

Очистка НКТ от парафина происходит в процессе вращения колонны штанг со скребками. Для этой цели применяют штанговращатели, монтируемые на устье скважины и поворачивающие колонну при движении вниз.

3.3.2 Тепловые методы

Тепловые методы основаны на способности парафина плавиться при воздействие тепла и выноситься потоком жидкости. Среди тепловых методов известны:

А) подача в скважину теплоносителей – пара и жидкостей;

Б) помещение теплоисточника в ствол скважины или на забой – электронагреватели, химические термогенераторы.

Промышленность выпускает для этих целей агрегаты и установки нескольких конструкций.

Промысловая паровая передвижная установка ППУА-1600/100 предназначается для депарафинизации оборудования паром, вырабатываемым специальным парогенератором, смонтированным на шасси автомобиля КрАЗ – 255Б1А.

Парогенератор – вертикальный прямоточный змеевиковый котел, превращающий воду в пар , в количестве 1.6м3/с с давлением 10мпа и температурой до 310 С . При воздействие пара на АСПО последние расплавляются, отделяясь от стенок труб и, смешиваясь с жидкостью, выносятся из скважины.

Агрегат депарафизационный предназначен для очистки скважин и оборудования от АСПО жидкостью, подогреваемой в нагревателе до 150 С и нагнетаемой насосом с производительностью 12м3/ч и давлением до 13мпа.

Электронагрев – один из способов тепловой обработки, состоящий в размещение источника тепла непосредственно в зоне воздействия, и обладающий наибольшей эффективностью: в этом случае удается избежать потерь тепла.

Для этой цели применяется специальная установка УЭС – 1500, включающая в себя каротажный подъемник типа ПК – 2 , смонтированный на автомобиле, и автотрансформаторе

3.3.3 Химические методы


Химические методы получили широкое развитие в последние годы, когда были созданы химические реагенты, активно воздействующие на парафин – ингибиторы парафинообразования. Среди них можно выделить несколько классов:

1) смачиватели создают на оборудовании защитную гидрофильную пленку, препятствующую прилипанию кристаллов парафина;

2) диспергаторы стимулируют взвешенное состояние кристаллов;

3) Модификаторы взаимодействуют с кристаллами парафина и диспергируют их.

В настоящее время вследствие высокой стоимости химреагентов проблема не в их приобретение, а в экономном использовании. Поэтому на первый план выдвигается разработка наиболее эффективных способов доставки реагентов в скважину. На практике получили применение три способа подачи реагента:

А) Залповый – разовая закачка большого объема химреагентов в пласт через определенные интервалы времени;

Б) Затрубный – дозирование в затрубное пространство устьевыми дозаторами;

В) Скважинный – дозирование к приему насоса скважинными дозаторами.

Залповый способ неэкономичен, так как реагент выносится вместе с жидкостью и используется по результатам исследований на 20-30%.

Учитывая высокую стоимость химических реагентов, особенно импортных, повсеместно применение этого способа вряд ли можно считать оправданным.

При дозирования в затрубное пространство реагент, проходя слой эмульгированной нефти, к приему насосов или башмаку труб поступает лишенным активности. С целью достижения эффекта приходится намеренно увеличивать дозу реагента, что снижает экономичность дозатора.

Следует иметь в виду еще один фактор: многие реагенты при снижение температуры окружающей среды увеличивают вязкость, а в зимнее время – замерзают. Это затрудняет операции с ними.

Скважинные дозаторы монтируют на приеме насосов и подают реагент непосредственно в область приема. Таким образом, реагент имеет высокую температуру, что усиливает его активность и немедленную реакцию.

Разработаны конструкции, позволяющие регулирование дозы и синхронную работу с насосом.

Опыт испытаний различных дозаторов, проведенный промысловыми инженерами и учеными, позволил выбрать следующие направления совершенствования и проектирования новых конструкций.

1) Простота устройства, позволяющая изготовить дозатор в условиях промысловых мастерских.

2) Незначительная масса ( в пределах 10-15 кг ) позволяющая транспортировать о монтировать его без привлечения грузоподъемных средств.

3) Простота монтажа, не требующая специальных дополнительных сооружений и сварочных работ на устье скважины.

4) Отказ от электропривода, как опасного, дорогостоящего и ненадежного, и использование в качестве привода движущих элементов СК.

5) Обеспечение подогрева химреагента.


3.4 Анализ причин ремонтов скважин оборудованных УШСН


Таблица 4. Причины ремонтов скважин, оборудованных УШСН в ЦДНГ № 3.

Причины ремонтов

01.01.05

01.01.06

Обрыв штанговых колон УШСН

15

13

Обрыв штанг по телу ( УШСН )

13

12

Обрыв укороченной штанги УШСН

0

0

Обрыв штанги по муфте УШСН

2

1

Негерметичность НКТ ( УШСН )

0

3

Обрыв НКТ по телу ( УШСН )

1

0

Обрыв НКТ по резьбе ( УШСН )

1

4

Износ резьбы НКТ ( УШСН )

3

0

Трещина в теле НКТ ( УШСН )

2

4

Трещина в муфте НКТ ( УШСН )

0

1

Износ НКТ истиранием ( УШСН )

1

0

Износ насоса ( УШСН)

3

2

Неисправность насоса (УШСН )

1

0

Отворот насоса ( УШСН )

0

1

Отложения парафина на приеме УШСН

4

4

Отложения гипса на приеме УШСН

0

0

Отложение солей на приеме УШСН

0

0

Всего

46

41


Уменьшение обрывов штанг связаны с выполнением мероприятий по снижению обрывов и отворотов штанговых колонн. Также с запуском на базе ПРЦГНО установки по дефектности штанги НКТ.

Увеличение ремонтов по причине отложения АСПО на приеме насоса может объяснить тем, что в 2006 году не было произведено тщательной профилактической промывки.


3.5 Анализ методов борьбы с АСПО и определение оценки эффективности применяемых методов

Таблица 5. Методы борьбы с АСПО в ЦДНГ №3.


 01.01.05

 01.01.06

Промывки НДС

 0

 2

Скребки - центраторы

 28

 28

НКТ с покрытием БМЗ

 13

 18


Без единой методики определения результативности методов, способов и технологий предупреждения выпадения АСПО невозможно вести серьезную аналитическую работу.

Под эффективностью мероприятия понимается обеспечение стабильной производительной работы скважины без образования АСПО на оборудовании. В физическом отношении эффективность выражается без парафиновым периодом работы скважины, превышающим базовый период. Проблема заключается в точном фиксировании без парафинового периода работы за счет применения мероприятия.

Естественно, необходимо предварительно зафиксировать базовый период работы скважины. Вместо традиционных субъективных МОП и МРП предлагается система численных критериев.

- максимальная нагрузка на головку балансира станка-качалки.

- сила тока на электродвигателе станка-качалки при ходе вверх/вниз.

- дебит скважины.

Все эти численные показатели определяются известными, относительно несложными, измерениями. В частности, нагрузки на головку балансира определяется расчетным методом или вычисляется по диаграмме, сила тока на электродвигателе замеряется стандартным электроприбором, дебит замеряется устьевыми дебитомерами типа СКЖ-15-40М, СКЖ-30-40 или автоматическими устройствами на ГЗУ.

Каждый из трех численных показателей работы скважины является индикатором появления и накопления АСПО на поверхности НКТ и штанг.

Но в комплексе они взаимодополняют друг друга по чувствительности и информативности процесса. Общая схема анализа эффективности методов предупреждения выпадения АСПО заключается в следующем:

- получение базовых данных / замеры скважины до мероприятия, слежение за их динамикой от начальных значений до критических.

- проведение мероприятия по борьбе с АСПО / например , промывка лифта, закачка реагента в затрубное пространство, спуск дозатора с ингибитором, спуск НКТ с покрытием или др.

- замеры скважины, слежение за их динамикой в течение анализируемого периода.

- обработка данных, анализ, выводы.

3.6 Контроль за работой скважин на которых применяются  методы борьбы с АСПО


При эксплуатации скважины в обычном режиме все показатели периодически замеряются с частотой, не менее 2-4 раза в месяц, в зависимости от темпа запарафинивания скважины. Одним из признаков этого момента является зависание штанг при ходе плунжера вниз. Величины контрольных параметров, снятых в этот период, назовем критическими.

Скважина останавливается. Производят подъем глубинно-насосного оборудования и его отчистку от АСПО. Скважина пускается в работу с применением того или иного мероприятия по предупреждению выпадения АСПО.

После выхода скважины на стабильный режим работы замеряются контрольные показатели. С периодичностью 2-4 раза в месяц снимаются замеры анализируемых показателей. Контроль за работой скважины ведут до момента достижения критических показателей, т.е. до момента полной парафинизации оборудования.

Аналогичным образом проводятся промысловые работы по замеру и слежению за контрольными параметрами при последовательном испытании других методов борьбы с АСПО на этой скважине.


3.8 Выводы и предложения

1. Мероприятия НГДУ по борьбе с АСПО в основном выполняются однако при планировании мероприятий не учитывается опыт применения данных методов в структурных подразделениях ОАО «Татнефть».

2. Осуществлять системный подход к парафиновой проблеме, нет четкого представления о способах и объемах применения различных методов борьбы с запарафиниванием.

3. Основным методом борьбы с АСПО в НГДУ остаются промывки.

Отмечена тенденция перехода от дорогих дистиллятных промывок не более дешевые промывки с применением МЛ-80. Однако, в НГДУ в большом объме применяются высокозатратные обработки скважин горячей нефтью и неэффективные обработки ингибитором парафиноотложений ТНПХ-1А.

4. Наибольшее количество ремонтов по причине запарафинивания приходится на фонд скважин с УШГН, где в качестве основного или дополнительного метода борьбы с АСПО применялись промывки, что свидетельствует об их низкой технологической эффективности.

5.В НГДУ отсутствуют свои разработанные технологические инструкции по проведению обработок скважин с обоснованием типа и объема промывки, порядка диагностирования скважины до и после проведения мероприятий.

6. Отсутствует полноценный анализ технико-экономической эффективности применяемых методов борьбы с АСПО. Использование нескольких методов борьбы с АСПО на одной скважине приводит к удорожанию и не позволяет выявить их индивидуальную технологическую эффективность.

7. В целом в НГДУ проблема борьбы с АСПО остается сложной, мероприятия, разработанные в НГДУ, не обеспечивают существенное снижение затрат при борьбе с АСПО.

1. Для увеличения эффективности и снижения затрат при выполнении мероприятий по борьбе с АСПО необходимо использование системного подхода при планировании данных мероприятий.

2. При планировании мероприятий необходимо учитывать:

- Экономическую и технологическую эффективность данного метода;

- Количество выполненных ПРС по причине АСПО при использовании данного метода;

Страницы: 1, 2, 3, 4, 5, 6, 7