рефераты

рефераты

 
 
рефераты рефераты

Меню

Освоение ресурсов мирового океана рефераты

добыча полиметаллических,  или,  как  их  чаще  называют,  железомарганцевых

конкреций (ЖМК). В их состав  входит  множество  металлов:  марганец,  медь,

кобальт, никель, железо, магний, алюминий, молибден, ванадий, всего-  до  30

элементов, но преобладают железо и марганец.

      В 1958 г. было доказано, что добыча ЖМК из  глубин  океана  технически

осуществима и может быть рентабельной. ЖМК встречаются в  большом  диапазоне

глубин - от 100  до  7000  м,  их  находят  в  пределах  шельфовых  морей  -

Балтийском,  Карском,  Баренцевом   и   др.   Однако   наиболее   ценные   и

перспективные  месторождения  расположены  на   дне   Тихого   океана,   где

выделяются две крупные зоны: северная, простирающаяся от  Всточно-Марианской

котловины через весь Тихий океан до склонов  поднятия  Альбатрос,  и  южная,

тяготеющая к Южной котловине и ограниченная на востоке  поднятиями  островов

Кука, Тубуан и Восточно-Тихоокеанским. Значительные  запасы  ЖМК  имеются  в

Индийском океане, в  Атлантическом  океане  (Северо-Американская  котловина,

плато Блейк). Высокая концентрация таких полезных минералов,  как  марганец,

никель, кобальт,  медь,  установлена  в  железомарганцевых  конкрециях  близ

гавайских островов, островов Лайн, Туамоту, Кука  и  других.  Надо  сказать,

что в полиметаллических конкрециях имеется больше, чем на суше,  кобальта  в

5 тыс. раз, марганца - в 4 тыс. раз, никеля - в 1,5тыс. раз,  алюминия  -  в

200раз, меди - в 150, молибдена - в 60, свинца- 50 и  железа  -  в  4  раза.

Поэтому добыча ЖМК из морских недр очень выгодна.

      Сейчас ведется опытная разработка ЖМК: создаются  новые  глубоководные

аппараты  с  видеосистемами,  буровыми  приспособлениями,  с   дистанционным

управлением,  которые  расширяют  возможности   изучения   полиметаллических

конкреций. Многие специалисты предрекают добыче железомарганцевых  конкреций

блестящее будущее, утверждают, что массовая  их  добыча  будет  в  5-10  раз

дешевле «сухопутной» и тем  самым  станет  началом  конца  всей  горнорудной

промышленности на суше. Однако  на  пути  к  освоению  конкреций  стоят  еще

многие   технические,   эксплуатационные,   экологические   и   политические

проблемы.




Энергетические ресурсы.




      Если нефть,  газ  и  каменный  уголь,  извлекаемые  из  недр  Мирового

океана, представляют  собой  в  основном  энергетическое  сырье.  То  многие

природные процессы в океане служат непосредственными носителями  тепловой  и

механической энергии.  Начато освоение  энергии  приливов,  сделана  попытка

применения термальной энергии,  разработаны  проекты  использования  энергии

волн, прибоя и течений.

      Использование энергии приливов.

      Под влиянием  приливообразующих  Луны  и  Солнца  в  океанах  и  морях

возбуждаются приливы. Они  проявляются  в  периодических  колебаниях  уровня

воды и в ее горизонтальном перемещении (приливные течения).  В  соответствии

с этим энергия приливов складывается из потенциальной  энергии  воды,  и  из

кинетической энергии движущейся воды. При расчетах  энергетических  ресурсов

Мирового океана для  их  использования  в  конкретных  целях,  например  для

производства электроэнергии, вся энергия  приливов  оценивается  в  1  млрд.

кВт, тогда как суммарная энергия всех рек земного шара равна 850  млн.  кВт.

Колоссальные энергетические мощности  океанов  и  морей  представляют  собой

очень большую природную ценность для человека.

      С давних времен люди стремились  овладеть  энергией  приливов.  Уже  в

средние  века  ее  начали  использовать  для  практических  целей.   Первыми

сооружениями, механизмы которых приводились в движение  приливной  энергией.

Были мельницы и лесопилки, появившиеся  в  X-XI  вв.  На  берегах  Англии  и

Франции.  Однако  ритм  работы  мельниц  достаточно  прерывистый  -  он  был

допустим для примитивных сооружений, которые выполняли простые, но  полезные

для своего времени функции. Для современного же  промышленного  производства

он мало приемлем,  поэтому  энергию  приливов  попытались  использовать  для

получения более удобной  электрической  энергии.  Но  для  этого  надо  было

создать на берегах океанов и морей приливные электростанции (ПЭС).

      Создание ПЭС сопряжено  с  большими  трудностями.  Прежде  всего,  они

связаны с характером приливов, на которые влиять  невозможно.  Так  как  они

зависят  от  астрономических  причин.  От  особенностей  очертаний  берегов,

рельефа, дна и т.п. (Цикл приливов определяется лунными сутками,  тогда  как

режим энергоснабжения связан с производственной деятельностью и бытом  людей

и зависит от солнечных суток, которые короче  лунных  на  50  минут.  Отсюда

максимум и минимум приливной энергии наступает в  разное  время,  что  очень

неудобно для ее использования). Несмотря на эти трудности.  Люди  настойчиво

пытаются  овладеть  энергией  морских   приливов.   К   настоящему   времени

предложено около  300  различных  технических  проектов  строительства  ПЭС.

Наиболее рациональным экономически эффективным решением специалисты  считают

применение в ПЭС  поворотно-лопастной  (обратимой)  турбины.  Идея,  которой

впервые была предложена советскими учеными.

      Такие турбины - их называют погруженными или капсульными агрегатами  -

способны действовать не только как турбины на оба направления потока.  Но  и

как насосы для подкачки  воды  в  бассейн.  Это  позволяет  регулировать  их

эксплуатацию  в  зависимости  от  времени  суток.  Высоты  и  фазы  прилива,

удаляясь от лунного ритма приливов и приближаясь к периодичности  солнечного

времени, по которому живут и работают  люди.  Однако  обратимые  турбины  не

компенсируют уменьшение силы прилива. Что вызывает  периодическое  изменение

мощности ПЭС и затрудняет ее эксплуатацию. Действительно, немалые  сложности

возникнут в  работе  территориальной  энергосистемы,  если  в  нее  включена

электростанция, мощность которой изменяется 3-4 раза в течение двух недель.

      Советские энергетики показали, что  эту  трудность  можно  преодолеть,

если  совместить  работу  приливных   и   речных   электростанций,   имеющих

водохранилища многолетнего регулирования. Ведь  энергия  рек  колеблется  по

сезонам и из года в год. При спаренной работе ПЭС и ГЭС энергия моря  придет

на  помощь  ГЭС  в  маловодные  сезоны  и  годы,  а  энергия  рек   заполнит

межсуточные провалы в работе ПЭС.

      Далеко не в любом районе земного шара есть условия  для  строительства

гидроэлектростанций   с    водохранилищами    многолетнего    регулирования.

Исследования показали, что передача приливной электроэнергии  из  прибрежной

зоны в центральные части материков будет оправданной для  некоторых  районов

Западной Европы, США, Канады,  Южной  Америки.  В  этих  районах  ПЭС  можно

объединить с ГЭС, уже имеющими большие водохранилища.  В  таком  комплексном

инженерном  (капсульные  агрегаты)  и  природно-климатическом  (объединенные

энергосистемы)  подходе  лежит  ключ  к   решению   проблемы   использования

приливной энергии. В настоящее время началось практическое освоение  энергии

приливов, чему в немалой степени  способствовали  усилия  советских  ученых,

позволившие реализовать идею превращения приливной энергии  в  электрическую

в промышленном масштабе.

      Первая в мире промышленная ПЭС мощностью  240  тыс.  кВт  построена  и

введена в действие в 1967 г. во  Франции.  Она  расположена  на  берегу  Ла-

Манша, в Бретани, в устье реки Ранс, где величина прилива достигает 13,5  м.

Плотина ПЭС пролегает между мысом  Бриант  на  правом  берегу  с  опорой  на

островок Шалибер. Многолетняя  эксплуатация  первенца  приливной  энергетики

доказала  реальность  сооружения.  Выявила  достоинства  и   недостатки   (в

частности относительно небольшая мощность) таких станций. В связи с этим  во

многих странах созданы и продолжают разрабатываться новые проекты  мощных  и

сверхмощных промышленных ПЭС. По  определению  специалистов,  в  23  странах

мира имеются подходящие районы для  их  строительства.  Однако  несмотря  на

множество проектов, промышленные ПЭС еще не сооружаются.

      При всех достоинствах ПЭС (для них не требуется создания  водохранилищ

и затопления полезных территорий суши, их работа  не  загрязняет  окружающую

среду и т.п.) их доля практически  неощутима  в  современном  энергетическом

балансе. Однако прогресс в освоении приливной энергии уже отчетливо  выражен

и перспективе станет более значительным.

      Использование энергии волн.

      Ветер возбуждает волновое движение поверхности океанов и морей.  Волны

и береговой прибой обладают  очень  большим  запасом  энергии.  Каждый  метр

гребня волны высотой 3 м несет в себе 100 кВт энергии, а каждый километр-  1

млн. кВт. По  оценкам  исследователей  США,  общая  мощность  волн  Мирового

океана равна 90 млрд. кВт.

      С давних времен инженерно-техническую мысль  человека  привлекла  идея

практического использования  столь  колоссальных  запасов  волновой  энергии

океана. Однако это очень сложная задача, и в  масштабах  большой  энергетики

она еще далека от решения.

       Пока удалось  добиться  определенных  успехов  в  области  применения

энергии морских волн для  производства  электроэнергии,  питающей  установки

малой  мощности.  Волноэнергетические  установки  используются  для  питания

электроэнергией  маяков,  буев,  сигнальных  морских   огней,   стационарных

океанологических  приборов,  расположенных  далеко  от  берега,  и  т.п.  По

сравнению с обычными электроаккумуляторами, батареями и другими  источниками

тока  они  дешевле,  надежнее  и  реже  нуждаются  в   обслуживании.   Такое

использование энергии волн широко  практикуется  в  Японии,  где  более  300

буев, маяков и другое оборудование  получают  питание  от  таких  установок.

Волновой  электрогенератор  успешно  эксплуатируется   на   плавучем   маяке

Мадрасского порта в Индии. Работы по созданию и усовершенствованию  подобных

энергетических  приборов  проводятся  в  различных  странах.   Перспективные

освоения энергии  волн  связаны  с  разработкой  совершенных  и  эффективных

устройств большой мощности. В течение последних лет появилось  много  разных

технических проектов их. Так, в Англии энергетиками  спроектирован  агрегат,

вырабатывающий электроэнергию  при  использовании  ударов  волн.  По  мнению

проектировщиков, 10  таких  агрегатов,  установленных  на  глубине  10  м  у

западных берегов Великобритании, позволят обеспечить  электроэнергией  город

с населением в 300 тыс. человек.

      На современном уровне научно- технического развития,  а  тем  более  и

перспективе, должное внимание к проблеме овладения  энергией  морских  волн,

несомненно,  позволит  сделать  ее   важной   составляющей   энергетического

потенциала морских стран.

      Использование термической энергии.

      Воды многих  районов  Мирового  океана  поглощают  большое  количество

солнечного тепла, большая часть которого аккумулируется в  верхних  слоях  и

лишь в небольшой мере распространяется в нижние. Поэтому  создаются  большие

различия  температуры  поверхностных  и  глубоколежащих  вод.  Они  особенно

хорошо  выражены  в  тропических  широтах.  В  столь  значительной   разнице

температуры  колоссальных  объемов  воды  заложены  большие   энергетические

возможности. Их используют в гидротермальных (моретермальных) станциях,  по-

другому - ПТЭО - системы  преобразования  тепловой  энергии  океана.  Первая

такая станция была создана в 1927 г. на реке Маас во Франции. В  30-х  годах

начали  строить  моретермальную  станцию   на   северо-восточном   побережье

Бразилии, но после аварии строительство прекратили.  Моретермальная  станция

мощностью 14 тыс. кВт была  построена  на  Атлантическом  побережье  Африки,

близ Абиджана (Берег Слоновой Кости), но  из-за  технических  неполадок  она

теперь не работает. Разработки проектов ПТЭО ведутся  в  США,  где  пытаются

создать плавучие варианты таких станций. Усилия специалистов  направлены  не

только  на  решения  технических  задач,  но  и  на  поиск  путей   снижения

себестоимости оборудования моретермальных станций, для того чтобы  увеличить

их  эффективность.  Электроэнергия  моретермальных   станций   должна   быть

конкурентоспособной   по   сравнению   с   электроэнергией   других    видов

электростанций. Действующие ПТЭО находятся  в  Японии,  Майами  (США)  и  на

острове Куба.

      Принцип работы ПТЭО и  первые  опыты  его  реализации  дают  основание

полагать, что экономически наиболее  целесообразно  создавать  их  в  едином

энергопромышленном  комплексе.  Он  может   включать   в   себя:   выработку

электроэнергии,  опреснение  морской  воды,  производство  поваренной  соли,

магния, гипса и других химических веществ, создание  марикультуры.  В  этом,

вероятно, заключаются основные перспективы развития моретермальных станций.

      Диапазон   возможностей   использования   энергетического   потенциала

Мирового океана довольно широк. Однако реализовать  эти  возможности  весьма

непросто.




Заключение.




      В наши дни к использованию ресурсов Мирового океана  применим  принцип

стадийности. На первой стадии антропогенного воздействия на океанскую  среду

(использование ресурсов, загрязнение и  т.п.)  нарушения  равновесия  в  ней

устраняются процессами ее самоочищения. Это безущербная  стадия.  На  второй

стадии, нарушения,  вызванные  производственной  деятельностью,  устраняются

естественным   самовосстановлением   и    целенаправленными    мероприятиями

человека,  требующими  определенных  материальных  затрат.   Третья   стадия

предусматривает восстановление и  поддержание  нормального  состояния  среды

только искусственными путями с привлечением  технических  средств.  На  этой

стадии    использования    морских    ресурсов    требуются     значительные

капиталовложения. Отсюда ясно,  что  в  наше  время  экономическое  освоение

океана понимается более широко. Оно включает в себя не только  использование

его ресурсов, но и заботу об их охране и  восстановлении.  Не  только  океан

должен отдавать людям свои богатства. Но и люди  должны  рационально  и  по-

хозяйски их использовать.  Все  это  осуществимо,  если  в  темпах  развития

морского производства учитывать сохранение и  воспроизводство  биологических

ресурсов  океанов  и  морей  и  рациональное  использование  их  минеральных

богатств. При таком подходе Мировой океан  поможет  человечеству  в  решении

продовольственной, водной и энергетической проблем.




Литература:


1. Книги:

1.1 Ч. Дрейк «Океан сам по себе и для нас»

1.2 С.Б. Селевич «Океан: ресурсы и хозяйство»

1.3 Б.С. Залогин «Океан человеку»

1.4 Б.С. Залогин «Океаны»

                         План


1.Вступление

2.Минеральные  ресурсы  Океана

3.Энергетические  русурсы  Океана

        1.Термальная  энергия

        2.Энергия  приливов

                 1.ПЭС Ранс

        3.Энергия  волн

                 1.Установки с пневматическим преобразователем

                 2.Волновая энергетическая установка "Каймей"

                 3.Норвежская промышленная волновая станция

                 4.Английский "Моллюск"

                 5.Волновой плот Коккерела

                 6."Утка Солтера"

        4.Энергия  ветра

        5.Энергия  течений

                 1.Система "Кориолис"

        6."Соленая"  энергия

                 1.Схема работы гидроосмотической электростанции

                 2.Схема работы подводной гидроосмотической станции

4.Заключение



    Проблема обеспечения электрической энергией многих отраслей  мирового

хозяйства, постоянно растущих потребностей более чем пятимиллиардного

населения Земли становится сейчас все более насущной.

      Основу современной мировой энергетики составляют тепло- и

гидроэлектростанции. Однако их развитие сдерживается рядом факторов.

Стоимость угля, нефти и газа, на которых работают тепловые станции, растет,

а природные ресурсы этих видов топлива сокращаются. К тому же многие страны

не располагают собственными топливными ресурсами или испытывают в них

недостаток. Гидроэнергетические ресурсы в развитых странах используются

практически полностью:

большинство речных участков, пригодных для гидротехнического строительства,

уже освоены. Выход из создавшегося положения виделся в развитии атомной

энергетики. На конец  1989 года в мире построено и работало более 400

атомных электростанций (АЭС). Однако сегодня АЭС уже не считаются

источником дешевой и экологически чистой энергией. Топливом для АЭС служит

урановая руда – дорогостоящее и труднодобываемое сырье, запасы которого

ограничены. К тому же строительство и эксплуатация АЭС сопряжены с большими

трудностями и затратами. Лишь немногие страны сейчас продолжают

строительство новых АЭС. Серьезным тормозом для дальнейшего развития

атомной энергетики являются проблемы загрязнения окружающей среды.

       С середины нашего века началось изучение энергетических ресурсов

океана, относящихся к  “возобновляемым источникам энергии”.

        Океан – гигантский аккумулятор и трансформатор солнечной энергии,

преобразуемой в энергию течений, тепла и ветров. Энергия приливов –

результат действия приливообразующих сил Луны и Солнца.

Страницы: 1, 2, 3, 4, 5, 6