рефераты

рефераты

 
 
рефераты рефераты

Меню

Оценка геокриологических условий Ямала в целях перспектив развития нефтегазовой отрасли рефераты

Что касается интенсификации опасных геокриологических процессов при разработке нефтегазовых месторождений, то следует учесть, что температура вскрываемых разведочными и эксплуатационными скважинами нефтегазоносных пластов обычно достигает 50-60°C. В случае же освоения районов, сложенных мощной толщей высокольдистых мерзлых пород (в частности, такие условия распространены повсеместно на севере Западно-Сибирской нефтегазоносной провинции), в результате нарушений почвенно-растительного слоя и оттаивания мерзлых пород вокруг приустьевой части скважин возможно быстрое образование термокарстовых воронок глубиной до 1-1,5 м и более. Особенно катастрофический характер этот процесс приобретает при возникновении пожаров на скважинах. На некоторых месторождениях севера Западной Сибири термокарстовым просадкам были подвержены до 40-50% скважин, что создало реальную угрозу безопасности их эксплуатации. Опасными последствиями чревато формирование ореолов оттаивания пород вокруг стволов скважин. Например, в затрубном пространстве могут образоваться каверны от вытаивания крупных ледяных включений.

Другим криогенным фактором, способным привести к аварийному состоянию скважин, является вторичное промерзание ореола оттаивания. Возникающие при этом напряжения могут вызвать значительные деформации ствола и вывести скважину из строя. Вероятность этого особенно велика на месторождениях с мощной толщей низкотемпературных многолетнемерзлых пород. Кроме того в радиусе до 100-200 м от устья скважин часто происходит активизация многих геокриологических процессов (термокарста, термоэрозии, пучения, морозного растрескивания, солифлюкции), приводящая к разрушению ранее существовавших там экосистем. На участках, сложенных песками, процессы морозного иссушения способствуют развитию ветровой эрозии. В сочетании с другими техногенными воздействиями, проявляющимися в ходе обустройства месторождений, это ведет к деградации естественных ландшафтов, формированию техногенных пустошей. Уже на стадии разведки эти нарушения охватывают от 3 до 10% площади нефтегазоносных структур.

Интенсивность и масштабы проявления опасных криогенных процессов могут значительно возрасти вследствие просадки поверхности месторождений, вызванной извлечением флюидов из их недр. Особую опасность это явление представляет для месторождений, расположенных на приморских низменностях в непосредственной близости от береговой линии. Опускание поверхности провоцирует термоабразионное разрушение берегов, активизацию термокарстовых процессов, что может привести к подтоплению территории месторождения, массовой деформации инженерных сооружений. Наконец, наличие многолетнемерзлых пород резко обостряет одну из главнейших проблем нефте- и газодобывающих регионов – проблему загрязнения окружающей среды. В северных районах криолитозоны время, необходимое для разложения нефтепродуктов, достигает максимальных значений: 50 и более лет. Близкое к поверхности залегание многолетнемерзлых пород увеличивает риск быстрого загрязнения речных вод. С другой стороны, практически не защищены от загрязнения подземные воды таликов, являющиеся важным источником водоснабжения. Процессы криогенного концентрирования в слое сезонного оттаивания способствует засолению грунтов, накоплению в них токсичных веществ. Это ведет к деградации растительности, возрастанию химической агрессивности геологической среды и осложнению инженерно-геокриологических условий, общему ухудшению санитарно-гигиенической обстановки.

Опыт обустройства и эксплуатации месторождений газа на севере Западной Сибири свидетельствует о том, что, несмотря на попытки свести к минимуму техногенное воздействие на природную среду, освоение промыслов, как правило, сопровождается сравнительно быстрым и глубоким изменением геокриологических условий территории. Особенно существенны такие изменения в промзонах месторождений, кустах эксплуатационных скважин, жилых поселках, где вследствие наиболее сильных техногенных воздействий часто происходит коренное изменение теплового состояния грунтов – их многолетнее промерзание на талых участках или, наоборот, протаивание в районах развития многолетнемерзлых пород. Изменение комплекса геокриологических условий дает толчок к образованию генетически связанных (или парагенетических) рядов экзогенных геологических процессов, угрожающих устойчивости фундаментов газопромысловых сооружений.

Строительство и эксплуатация трубопроводов в криолитозоне приводит к новообразованию или активизации геокриологических процессов, развивающихся как в зоне непосредственного взаимодействия с трубопроводом, так и на прилегающей к нему территории. Эти процессы могут оказать существенное влияние на работоспособность трубопровода и быть причиной его аварий, а также нарушить экологическую устойчивость природной геокриологической среды.

Температурный режим трубопроводов в криолитозоне является основополагающим для теплового и механического взаимодействия их с мерзлыми грунтами, так как определяет направленность и интенсивность процессов промерзания-оттаивания пород, развитие криогенный процессов, напряжение в металле трубы, конструктивные решения трубопровода. В зависимости от температуры продукта участки трубопровода подразделяются на горячие, теплые и холодные. Из всех способов прокладки трубопроводов наибольшее тепловое воздействие на грунты оказывается при подземном способе прокладки трубопроводов. При транспортировке продукта с положительной среднегодовой температурой (“горячие” и “теплые” участки) вокруг трубопроводов, уложенных в мерзлые грунты, происходит дестабилизация естественных тепловых процессов и формирование ореолов оттаивания пород, размеры которых для трубопроводов диаметром 1220 и 1420 мм в зависимости от инженерно-геокриологических характеристик грунтов и температуры продукта, по данным компьютерного моделирования и натурных наблюдений, достигают 3-10 м и более за 7-10 лет эксплуатации. Наибольшая интенсивность оттаивания мерзлых грунтов наблюдается в первые 2-4 года эксплуатации, когда скорость оттаивания составляет от 1,0 – 1,8 м/год при температуре продукта 20-30° C до 0,6-1,0 м/год при температуре 5-10° C.

Строительство и эксплуатация трубопроводов приводит к активизации геокриологических процессов, развитых до их прокладки, а иногда к возникновению новых, ранее не проявлявшихся. На участках бугристых торфяников, кочковатых тундр с болотами и в понижениях рельефа по трассам газопроводов широко развивается процесс заболачивания, чему способствует избыточная влажность при оттаивании мерзлых грунтов, малая величина испарения, близость водоупора – мерзлых грунтов.

В результате техногенный геокриологических процессов, связанных с оттаиванием мерзлых грунтов, возникают значительные горизонтальные и вертикальные деформации газопроводов, приводящие к появлению напряженных участков. Отмечаются такие дефекты, как отклонение проектного положения трубы на несколько метров, вертикальные и горизонтальные арки, гофры, змейки и другие дефекты. На вдольтрассовых полосах в результате техногенных нарушений, вызванных прокладкой газопроводов и сопутствующими ей работами (уничтожение древесной растительности, повреждение мохово-растительного покрова, изменение характера снегоотложений и стока поверхностных вод и т.д.), наблюдается увеличение в 1,2-1,6 раза глубин сезонного оттаивания пород, развитие термокарстовых просадок глубиной до 1,0-2,0 м, заболачивание территории. Возрастает неравномерность пучения пород при промерзании сезонноталого слоя.

Комплекс спровоцированных техногенным воздействием деструктивных геокриологических процессов (оттаивание и осадка мерзлых грунтов, термоэрозия, разуплотнение, заболачивание и т.д.) в наибольшей степени проявляется при подземной прокладке теплых трубопроводов на льдистых мерзлых грунтах. Развитие этих процессов происходит настолько интенсивно, что эксплуатация трубопровода через несколько лет становится практически невозможной.

Для уменьшения неблагоприятного воздействия на трубопроводы техногенных геокриологических процессов используются инженерные мероприятия: устройство теплоизолирующих экранов, баллансировка или заанкеривание трубы, охлаждение грунтов сезоннодействующими охлаждающими устройствами и т.д. Однако должного эффекта эти мероприятия, как правило, не дают, и к тому же являются трудоемкими и дорогостоящими.

Наиболее радикальный путь предотвращения неблагоприятных техногенных геокриологических процессов – это постоянное сохранение мерзлого состояния грунтов вокруг трубопровода, что достигается круглогодичным охлаждением транспортируемого газа до отрицательных температур. Значительные энергетические затраты на искусственное охлаждение газа окупаются повышением пропускной способности трубопроводов и надежностью их эксплуатации.

Вместе с тем, при транспортировке газа, охлажденного до отрицательных температур, возникают новые проблемы, связанные как с промораживанием талых грунтов, пересекаемых газопроводом, так и с обратным промерзанием оттаивших при эксплуатации теплого газопровода мерзлых грунтов. Геокриологические процессы, которые при этом будут происходить, могут привести к значительным деформациям трубопровода.

В процессе строительства участка подземных газопроводов существенно нарушаются природные условия. Нарушение растительных покровов, изменение температурного режима и глубин сезонного оттаивания-промерзания пород активизируют такие геокриологические процессы, как солифлюкционное течение и термоэрозия. Нередко солифлюкция и термоэрозия развиваются совместно: термоэрозионные врезы сопровождаются солифлюкционным оплыванием больших масс грунта. Термоэрозионному размыву также способствует проходка траншеи для укладки трубопровода, которая является аккумулятором для поверхностных и надмерзлотных вод.

Проходка траншеи также приводит к частичному или полному спуску озер и новообразованию мерзлых пород в котловинах осушенных озер. Процесс промерзания при этом, как правило, сопровождается образованием сегрегационных бугров пучения, высота которых достигает 1,1-1,4 м. Увеличение мощности слоя сезонного оттаивания-промерзания, влажности пород и повышение их температуры приводит к увеличению сезонного пучения и осадки грунтов в полосе строительства в 1,1-2 раза (4-12 см/м), а в траншее в 2-5 раз (8-30 см/м) по сравнению с их величиной в естественных условиях.

Уничтожение растительности, уменьшение высоты снежного покрова до его полного удаления, транспортировка холодного газа значительно охлаждают поверхностные слои мерзлых пород. Это может привести к температурным напряжениям и образованию криогенных трещин в мерзлых грунтах, что в ряде случаев является причиной дополнительных растягивающих напряжений в холодных трубопроводах, способствующих нарушению изоляции трубы, увеличению коррозии.

Из всех видов наземной прокладки наибольшее распространение в криолитозоне получила наземная прокладка в насыпи (обваловке). Геокриологические техногенные процессы, развивающиеся на участках наземной прокладки, обусловлены как тепловым воздействием транспортируемого продукта, так и нарушениями естественных условий теплообмена и поверхностного стока при устройстве насыпи.  Формирование под трубопроводом чаши оттаивания вызывает неравномерную осадку грунтов основания и способствует деформированию насыпи (оседанию, образованию провалов и воронок, сползанию откосов). При этом надмерзлотные и поверхностные воды будут собираться в чаше оттаивания как в дрене. В случае хорошо дренированных грунтов поток надмерзлотных вод вызывает процесс подземной суффозии, сопровождающийся оседанием и разрушением тела насыпи. Если грунты под трубопроводом плохо дренированы, то эти воды могут смыть насыпь. На холодных участках трубопроводов происходит поднятие границы мерзлых грунтов в насыпь. В этом случае насыпь и труба играют роль плотины, перегораживающей сток поверхностных и грунтовых вод, особенно в паводок и половодье. Накопление этих вод в результате барражного эффекта и их фильтрация через тело насыпи приводят к ее постепенному размыву. Отмечаются также случаи разрушения насыпей в результате эрозионного размыва поверхностными водами при прохождении трубопроводов вдоль крутых склонов.

Многочисленные наблюдения, выполненные на трубопроводах, показывают, что большинство насыпей на участках наземной прокладки через 2-3 года полностью разрушаются, а труба обнажается. Учитывая, что металл труб, как правило, не рассчитан на воздействие низких зимних температур воздуха, последнее обстоятельство способствует возникновению аварийных ситуаций. Наземная прокладка трубопровода в насыпи, затрудняя сток поверхностных вод, благоприятствует обводненности и заболоченности повернхости на прилегающей территории выше трубопровода и осушению ниже его. На обводненных участках отмечается развитие термокарстовых просадок глубиной до 1,5-2,0 м, на осушенных – пучение поверхности и образование бугров пучения со скоростью 3-5 см /год.

Наибольшую сохранность природных геокриологических условий обеспечивает надземный способ прокладки трубопроводов. При надземном способе непосредственное тепловое воздействие транспортируемого продукта на мерзлые грунты практически исключается, в связи с чем проявление техногенных геокриологических процессов связано, главным образом, с техногенными нарушениями при строительстве трубопровода, при проведении ремонтных работ, а также с изменением характера снегоотложений у опор трубопровода.

Города и поселки на Севере представляют собой очаги концентрированного техногенного влияния на природную обстановку, приводящего к развитию опасных для устойчивости зданий и сооружений геокриологических процессов (термокарст, пучение, морозобойное растрескивание, наледообразование и др.). Естественно, что результат этого негативного влияния зависит как от природных условий (климатических, геокриологических, гидрогеологических), так и от интенсивности антропогенного воздействия. Последнее, как известно, сопровождается изменением теплового состояния пород и химическим загрязнением геологической среды.

Формирование температурного поля на застроенной территории зависит от интенсивности тепловой нагрузки, от сочетания и площади участков, к которым она приложена. Это, в свою очередь, определяется планировкой застройки, конструкцией и назначением сооружений, уровнем благоустройства территории и климатом. Распределение температуры в грунтах зависит еще и от механизма теплоперадачи. В подавляющем большинстве случаев передача тепла происходит за счет теплопроводности. Однако на отдельных участках, где имеются грунтовые воды, вместе с кондуктивной может быть и конвективная теплопередача. При этом изменения температуры грунта будут происходить более интенсивно.

Начиная с глубины 20-30 м, температурные изменения в грунте не зависят от характера приложения к поверхности тепловой нагрузки и определяются только ее суммарным значением. Если суммарный поток тепла в грунт через его поверхность после освоения территории окажется выше, чем до ее освоения, то на застроенной территории будет происходить деградация мерзлых толщ, а если ниже, - их аградация. При аградации мерзлых толщ усиливается интенсивность морозного пучения, морозобойного растрескивания и наледообразования, при деградации – термокарст, солифлюкция и термоабразия.

Как показывает практика строительства на вечной мерзлоте, оттаивание грунтов под зданиями часто является результатом плохой работы вентилируемых систем здания, утечек воды из труб, увеличения минерализации подземных вод; а охлаждение и промораживание – результатом очистки от снега транспортных магистралей и прилегающих к зданиям территорий, удаления растительного покрова.

Геоэкологические условия

Одним из основных дестабилизирующих факторов окружающей среды и состояния экологической обстановки на п-ове Ямал является гусеничный транспорт. Широкое применение этого транспорта для доставки грузов по бездорожью при разведочном бурении на Новопортовском, Каменномысском, Ростовцевском месторождениях привело к уничтожению почвенно-растительного покрова до 10 и более процентов на больших площадях. Таким образом, гусеницами вездеходов и тракторов перепахана вся тундра, а вдоль дорог, действующих в течение нескольких лет, тянутся "кладбища" брошенной техники. В результате техногенного нарушения поверхностного слоя изменяется его температурный режим, при этом в высокольдистых грунтах по колеям гусеничного транспорта, происходит резкая активизация термокарста, термоэрозии, солифлюкции, пучения.

Наиболее активное техногенное воздействие на окружающую среду наблюдается на площадях осваиваемых месторождений, где идет бурение скважин. По отводимой площади, буровые площадки находятся на втором месте после линейных сооружений. Производство этих работ связано с уничтожением почвенно-растительного слоя, более чем на 2/3 площади грунты перемешиваются. Буровые площадки и дороги, строящиеся на болотах, отсыпаются привозным грунтом. В настоящее время при разработке месторождений применяется кустовое бурение скважин. В данном случае увеличивается время бурения, что в свою очередь увеличивает техногенную нагрузку  на природную среду. На всех площадях осваиваемых месторождений отмечается загрязнение нефтепродуктами, буровыми растворами и химическими реагентами. Обычно загрязняющие вещества концентрируются в понижениях, приводя к гибели растительности или попадают в речную сеть по естественным стокам. Наиболее опасным источником загрязнения являются буровые растворы. Для придания им необходимых технологических свойств применяется большое количество химических реагентов, в том числе представляющих серьезную опасность для природы. В скважину подается метанол (метиловый спирт) для ликвидации возможности гидратации в газе и последующего замерзания. При бурении и испытании скважин используют различные промывочные жидкости, включающие органические и неорганические химические соединения. Наибольшее применение имеют следующие неорганические химические реагенты: едкий натр, кальцинированная сода, жидкое стекло, фосфаты и бихроматы, известь, мел, хлористый кальций и натрий и др.

Из органических соединений в буровых растворах широко используется карбонсилметилцеллюлоза, крахмальные реагенты, модифицированные лигнины, естественные и синтетические танины, а также реагенты на основе полимеров и реагенты специального назначения. Наряду с буровыми растворами на водной основе в отдельных случаях применяют растворы на углеводородной основе (дизтопливо, нефть). В среднем на бурение одного погонного метра скважин расходуется (кг): цемента - до  85, бария – 4, химических реагентов - до 6. Некоторые из выше перечисленных реагентов обладают значительной токсичностью, однако, для них до настоящего времени не установлены допустимые концентрации и лимитирующие показатели вредности. Химическое загрязнение (сброс и утечка промстоков, технических жидкостей, минерализованных вод, веществ искусственного происхождения и т.п.)  оказывает влияние в первую очередь на растительный покров, что выражается в выпадении из растительного сообщества отдельных видов и деградации сообщества либо к полному разрешению последнего. Разрушение растительности и активизирует экзогенные и криогенные процессы, к растеплению грунта может привести и попадание на грунт некоторых жидкостей или веществ либо попадание в грунт химреагентов имеющие отрицательную фазовую температуру и переводящие грунты в физически талое состояние даже при отрицательных температурах грунтов.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12