рефераты

рефераты

 
 
рефераты рефераты

Меню

Реферат: Химия радиоматериалов, лекции Кораблевой А.А. (ГУАП) рефераты

Li|Li+

Rb|Rb+

K|K+

Cs|Cs+

Al|Al3+

Mg|Mg2+

Zn|Zn2+

Fe|Fe2+

Ni|Ni2+

Sn|Sn2+

Pt,H2|2H+

Cu|Cu2+

Ag|Ag+

Au|Au3+

-3.045 -2.925 -2.925 -2.923 -1.662 -1.18 -0.763 -0.44 -0.25 -0.126 0 +0.34 +0.8 +1.5

Измеряется в Вольтах

Чем больше положительный электродный потенциал, тем устойчивее металл в контакте с другими металлами, следовательно, он труднее окисляется, а его положительные ионы легче восстанавливаются из растворов электролитов, следовательно, легче получить этот металл из вольтных растворов на катоде в случае электролиза.

        Используя электродные потенциалы можно говорить о коррозионной стойкости металлов и методах защиты от коррозии. Используя электродные потенциалы можно осуществлять очистку металлов от различного рода примесей, более или менее активных, чем сам металл и т.д.

(3) Электрохимическая коррозия металлов и методы защиты от нее.

        Коррозия металлов это самопроизвольное разрушение металлов под действием окружающей среды. По механизму коррозионного разрушения различают:

1)    Химическая коррозия, т.е. окислительно-восстановительное взаимодействие или гетерогенная химическая реакция без возникновения электрического тока. Она осуществляется в газах при высоких температурах или в жидкостях не электролитах.

2)    Электрохимическая коррозия. Происходит в атмосферных условиях и в жидкостях электролитах с возникновением электрического тока в результате работы микро и макро гальванических пар. Микрогальванические пары создаются в результате наличия примесей в металле, а макрогальванические – в результате контакта металлов друг с другом. Поскольку на поверхности металла всегда есть плёнка электролита, то возникает гальвано электричество.

Чтобы избежать коррозии:

1)    Использовать чистые металлы, они практически не подвергаются коррозии

2)    Катодная защита: подсоединить к источнику постоянного тока к отрицательно заряженному электроду.

3)    Протекторная защита: более активный металл присоединить к корпусу и он (металл) будет подвергаться разрушению, а основной металл (корпус) при этом разрушению не подвергается пока не разрушится протектор.

4)    Металлические покрытия, которые классифицируются на анодные и катодные. Анодные – более активный металл, катодные – менее. И те, и другие в равной степени защищают от коррозии, если не нарушена целостность покрытия. В случае нарушения покрытия (трещины, неплотное покрытие) наиболее эффективны анодные покрытия.

1.7 Классификация металлов

(1)физические свойства металлов

группа и название металлов

d кг/м3 плотность при 20°С

Температура °С теплопроводность, Вт/мК при 20°С

ρ удельное сопротивление *106

плавления кипения
лёгкие цветные металлы
Al 2699 660 2060 211.0 0.0265
Mg 1740 650 1107 157.4 0.047
Ti 4540 1800 3400 14.9 0.47
тяжелые цветные металлы
Ni 8900 1455 2730 58.6 0.068
Zn 7140 419 907 111.1 0.059
Sn 7300 232 2270 63.1 0.115
Cu 8960 1083 260 385.2 0.0167
Pb 11340 327 1740 34.6 0.2065
малые цветные металлы
Mo 10200 2625 4800 140 0.0517
W 19350 3377 6000 160 5.03
благородные цветные металлы
Au 19320 1063 2600 311 0.0225
Ag 10490 960 2210 421 0.0159
Pt 21450 1773 4410 69.9 0.109
редкие металлы
Ge 5360 958 1760 0.89 (при 0)
Nb 8570 2420 3700 0.131
Ta 11600 2850 5050 54.4 0.124

(2) Металлы высокой проводимости Cu, Ag, Al.

Медь (Cu), достоинства

1)    малое удельное сопротивление (уступает только серебру)

2)    достаточно высокая механическая прочность

3)    удовлетворительная стойкость к коррозии

4)    хорошая обрабатываемость (прокатывается в листы, в ленту, протягивается в проволоку)

5)    относительная легкость пайки и сварки

Содержание примесей влияет на различные свойства меди. Медь марки М1 содержит 99.90% меди, примеси 0.10%, медь марки М0 содержит 99.95% меди, примеси 0.05%. Если в примесях Zn, Cd, Ag, то они снижают электропроводность на 5%, а Ni, Sn или Al – на 25 – 40%. Еще более сильное влияние оказывают примеси Be, As, Fe, Si и P, которые снижают электропроводность на 55% и более. Поэтому медь очищают различными способами: до 99.97% электролитическим способом.

        В вакуумных печах получают медь, содержащую 99.99% меди. Эта медь имеет электропроводность примерно равную электропроводности Ag. Из специальной меди изготавливают детали магнетронов, аноды мощных генераторных ламп, выводы энергии приборов СВЧ, некоторые типы волноводов и генераторов; ее используют для изготовления фольгированного гетинакса, в микроэлектронике в виде осажденных на подложке пленок, играющих роль проводящих соединений между функциональными элементами схемы.

        Алюминий почти в 3.5 раза легче меди. Марка А97 (0.03% примесей) используется для изготовления алюминиевой фольги и электродов. А999 (0.001% примесей). Оксидная пленка предохраняет алюминий от коррозии, но создает большое сопротивление в местах спайки, что затрудняет пайку обычными методами. Из оксидированного алюминия изготавливают различные катушки без дополнительной изоляции, но при большой толщине Al2O3 уменьшается гибкость, и увеличивается гигроскопичность.

(3) Тугоплавкие металлы

        Температура плавления более 1700°С. Основными тугоплавкими металлами являются металлы, стоящие в середине периода, у которых наряду с металлическими связями есть еще и ковалентные

(n-1)dSns1

 
W

Cr

Mo

Один электрон участвует в металлической связи, т.е. делокализован, обобществлен всем кристаллом, а остальные d электроны принимают участие в ковалентной связи. Ковалентная связь прочна. Кристаллическая решетка имеет высокую энергию связи, и требуются высокие температуры, чтобы эту связь разрушить. Для этих металлов характерна высокая твердость, но в то же время они обладают низкой пластичностью. К металлам с высокой температурой плавления относятся W, Mo, Ta, Nb, Cr, V, Ti, Re, Zr; температура плавления [1700;3500]°C.  W самый тугоплавкий. Имеет высокую механическую прочность. Используется в качестве нитей в лампах, электронных лампах, в рентгеновских трубках, используется при  глубоком вакууме. Недостатки: трудная обрабатываемость и образование оксидных пленок.

(4) Благородные металлы

        Не взаимодействуют (почти) с окружающей средой в связи со своей химической стойкостью

Au 99.998%

Ag 99.9999%

Pt 99.9998%

Pd 99.94%

Au – является контактным материалом для коррозионно стойких покрытий

Ag с высокой проводимостью используется в качестве высоких контактов в качестве электродов, производстве конденсаторов

Pt – для изготовления термопар, чувствительных приборов

Pd – заменитель платины (дешевле в 4-5 раз)

(5) Металлы со средним значением температуры плавления.

Fe, Ni, Co

(6) Металлы с невысокими температурами плавления.

        Стоят они в нижней части периодической системы: имеют большой радиус, и, как правило, у них нет свободных (не спаренных) d-электронов, и для них характерна металлическая связь. Pb, Sn, Ga, In, Hg. Hg применяется в качестве жидких катодов.

1.8 Сплавы

        Одним из важнейших свойств металлов является образование сплавов. Расплавленные металлы растворяются друг в друге, образуя при отвердевании твердые смеси – сплавы. Металлическим сплавом называется фаза или комплекс фаз, образующихся при сплавлении металлов при условии сохранения металлических свойств: электро- и теплопроводность. В металлических сплавах сохраняются связи, т.е. и наличие свободных электронов. Если образуются ковалентные связи, то образуются интерметаллические неорганические соединения.

               

Все металлы по величине диаметра атомов делятся на:

1)    при диаметре 2.2-3Å металлы образуют между собой непрерывные твердые растворы. (Mn, Fe, Ni)

2)    при диаметре >3Å – не смешиваются с металлами середины длинных периодов. (K, Ca, Si)

3)    при диаметре <2Å (не металлы) – образуют ограниченные твердые растворы или фазы внедрения. (Ti, V, Cr)

3-х компонентные системы представляют собой треугольник Гиббса, вершины которого – чистые вещества А, В, С. Соответствующие свойства – в области, перпендикулярной к треугольнику.

Существуют 3-7 компонентные сплавы

Сплавы высокой проводимости.

1) Бронзы – сплавы на основе Cu. Помимо чистой Cu применяют сплавы, содержащие небольшое количество олова (Sn), кремния (Si), фосфора (P), бериллия (Be), хрома (Cr), магния (Mg), кадмия (Cd). При этом ρ увеличивается, зато сплавы обладают более высокими механическими свойствами. Предел при растяжении = 8350 Па. Особенно удачен Cd. При малом уменьшении σ, приводит к значительному увеличению прочности. Еще больше прочности у бериллиевой бронзы.

Латуни – повышенное значение относительного удлинения при увеличении предела прочности. Это обеспечивает технологические преимущества (изготовление токопровдящих деталей).

2) Сплавы алюминия.

Альдрей – содержит 0.3-0.5% Mg, 0.4-0.7% Si, 0.2-0.3% Fe; сохраняет лёгкость алюминия, близок ему по сопротивлению, приближен по механической прочности к твердотянутой меди.

Сплавы для электровакуумных приборов.

На основе металлов со средней температурой плавления (Fe,Ni) созданы сплавы, которые широко применяются в электровакуумных технологиях, т.к. они обладают αL – коэффициент линейного температурного расширения, позволяют получать сокращенные металлические конструкции и спаи со стеклом.

Инвар (Н36) – сплав Fe и 36% Ni

αL = 1*10-6 К-1 при Т = (-100)-100°С.

Ковар – Fe + 29% Ni + 17% Сo

αL = 4.8*10-6 К-1

ρ = 0.5 ρ инвара.

Инвар и ковар применяют для герметизации изделий путём сварки со стеклом, для изготовления конденсаторов с переменной ёмкостью.

Платинид (Н47) – Fe и 47% Ni

αL≈ αL Pt и стекол.

Используется как вводы в стеклянные баллоны

Припои – сплавы для пайки.

Температура плавления припоя < температуры плавления соединения.

На границе металл – припой: припой смачивает металл, растекается и заполняет зазоры, при этом компоненты припоя диффундируют в основной металл, следовательно образуется промежуточная прослойка. Припои делят на мягкие и твердые: мягкие - температура плавления < 300°С, твердые - температура плавления > 300°С. Механическая прочность мягких припоев 16-100 МПа, у твердых 100-500 МПа. Мягкие припои – оловянно-свинцовые, твердые – Cu, Zn, Ag с добавлением вспомогательных материалов.

Вспомогательные материалы (флюсы):

1)    растворять и удалять оксиды из спаиваемых металлов.

2)    защищать в процессе пайки поверхность от окисления.

3)    уменьшать поверхностные натяжения

4)    уменьшать растекаемость и смачиваемость припоя

По оказываемому действию:

1)    активные (кислотные: HCl, ZnCl2, хлористые и фтористые металлы) – интенсивно растворяют оксидную пленку, но после пайки вызывают коррозию, следовательно, нужна тщательная промывка. При монтажной пайке применение активных флюсов запрещено.

2)    Бескислотные флюсы – канифоль и флюсы на ее основе с добавлением спирта и глицерина.

3)    Активированные – канифоль + активаторы (солянокислый диметиламин) – пайка без предварительного удаления оксидов после обезжиривания.

4)    Антикоррозийные флюсы на основе H2PO3 с добавлением контактол

Контактолы:

1)    Ag, Ni, Pd, в порошкообразном виде используют в качестве проводящей фазы в пасте.

2)    Высокомолекулярные вещества. Применяются для получения контактов между металлами, металлами и полупроводниками, создания электродов, экранирования от помех…

Керметы

Металлоэлектрические композиции с неорганическими связующими для резисторов, волноводных нагрузок с повышенным значением ρ.

Сплавы высокого сопротивления

Для электроизмерительных приборов, образцовых резисторов, реостатов, электронагревательных приборов.

Среди большого количества сплавов наиболее распространены сплавы на медной основе: манганин и константан. Хромоникелевые и железо-хромо-алюминивые сплавы.

Манганин: Mg – 12%, Ni – 2%, Cu – 86%

Константан: Cu – 60%

max ρ и min αρ ≈ 0 или < 0. При нагреве образуется пленка оксида – оксидная изоляция. Константан в паре с Fe или Cu дает термо-ЭДС.

Хромоникелевые  сплавы – изготовление нагревательных элементов, резисторов.

Fe-Cr-Ni (фехроль, хромель) – дешевые сплавы для мощных нагревательных устройств. Недостаток – хрупкость и твердость.

Страницы: 1, 2, 3