рефераты

рефераты

 
 
рефераты рефераты

Меню

Реферат: Платина рефераты

Ïëàòèíîâûå ìåòàëëû, íàõîäÿùèåñÿ â ìåäíîì êîíöåíòðàòå, ïîñëå îáæèãà, îòðàæàòåëüíîé ïëàâêè, êîíâåðòèðîâàíèÿ è îãíåâîãî ðàôèíèðîâàíèÿ êîíöåíòðèðóþòñÿ â ìåäíûõ àíîäàõ, ïîñëå ýëåêòðîðàôèíèðîâàíèÿ ïåðåõîäÿò â ìåäíûé øëàì. Ìåäíûé è íèêåëåâûé øëàìû îáîãàùàþò ñ ïîëó÷åíèåì êîíöåíòðàòîâ, ñîäåðæàùèõ äî 60 % ïëàòèíîâûõ ìåòàëëîâ. Ýòè êîíöåíòðàòû íàïðàâëÿþò íà àôôèíàæ.

 ïîñëåäíèå ãîäû äëÿ ïåðåðàáîòêè ìåäíûõ è íèêåëåâûõ êîíöåíòðàòîâ ïðåäëîæåíû âûñîêîèíòåíñèâíûå àâòîãåííûå ïðîöåññû: ïëàâêà â æèäêîé âàííå, âçâåøåííàÿ ïëàâêà, êèñëîðîäíî-âçâåøåííàÿ ïëàâêà è äð. Ïðèìåíÿþò òàêæå ãèäðîìåòàëëóðãè÷åñêóþ ïåðåðàáîòêó ïëàòèíóñîäåðæàùèõ ñóëüôèäíûõ êîíöåíòðàòîâ ñ èñïîëüçîâàíèåì îêèñëèòåëüíîãî àâòîêëàâíîãî âûùåëà÷èâàíèÿ, ñîëÿíî- è ñåðíîêèñëîå âûùåëà÷èâàíèå, õëîðèðîâàíèå ïðè êîíòðîëèðóåìîì ïîòåíöèàëå è äðóãèå ïðîöåññû.

Òàêèì îáðàçîì, ïëàòèíîâûå ìåòàëëû â ïðîöåññå ïèðî- è ãèäðîìåòàëëóðãè÷åñêîé ïåðåðàáîòêè ïîäâåðãàþò âîçäåéñòâèþ îêèñëèòåëåé ïðè òåìïåðàòóðàõ äî 1200-1300 °Ñ, äåéñòâèþ êèñëîò ïðè âûñîêèõ îêèñëèòåëüíûõ ïîòåíöèàëàõ ñðåäû, àíîäíîìó ðàñòâîðåíèþ ïðè çíà÷èòåëüíûõ ýëåêòðîïîëîæèòåëüíûõ ïîòåíöèàëàõ. Ïîýòîìó íåîáõîäèìî ðàññìîòðåòü ïîâåäåíèå ýòèõ ìåòàëëîâ â ðàçëè÷íûõ ïðîöåññàõ ñ öåëüþ ñîçäàíèÿ óñëîâèé äëÿ ïîâûøåíèÿ èçâëå÷åíèÿ èõ â ïðèíÿòûõ è ïðîåêòèðóåìûõ òåõíîëîãè÷åñêèõ ñõåìàõ ïåðåðàáîòêè ïëàòèíóñîäåðæàùèõ ñóëüôèäíûõ ìåäíî-íèêåëåâûõ êîíöåíòðàòîâ.

Ôèçèêî-õèìè÷åñêèå îñíîâû ïîâåäåíèÿ ïëàòèíû ïðè ïåðåðàáîòêå ñóëüôèäíîãî ñûðüÿ.

Пирометаллургические процессы.

При переработке сульфидных руд пирометаллургическими способами благо­родные металлы частично теряются с отвальными шлаками, пылями и газами. Для теоретической оценки возможности таких потерь и создания условий для их уменьшения большой интерес представляет зависимость свободных энергий об­разования оксидов и сульфидов благородных металлов от температур.

Таблица 5.

Свободные энергии окисления сульфидов.

Реакция

Уравнение свободной энергии

DGТ, Дж/моль

DGТ, Дж/моль О2 при температуре, К

1173       1273      1573

PtS(тв)+2O2(г)=PtO2(тв)+SO2(г)

-228000+87.5·Т

-          -227        -214

PtS(тв)+2O2(г)=PtO2(г)+SO2(г)

-17600-7.5·Т

-26         -27          -29

Агломерация. В процессе агломерации концентрат подвергается окускованию и частичной десульфурации при 1000-1100 °С, что сопровождается процессами разложения высших сульфидов и окисления получившихся продуктов кислоро­дом воздуха.

Электроплавка сульфидного никель-медного концентрата осуществляется в электропечи, куда поступает концентрат, содержащий в зависимости от месторо­ждения от 20 до 150 г/т платиновых металлов. В шихту вместе с окатышами и аг­ломератом добавляют оборотные продукты и, в зависимости от состава исход­ного сырья, известняк или песчаник. Температура расплава на границе с электродом достигает 1300-1400 °С. Пустая порода ошлаковывается; шлак сли­вают, гранулируют. На некоторых предприятиях его подвергают измельчению и флотации с целью более полного извлечения благородных металлов. Содержание благородных металлов в шлаке в зависимости от режима плавки и состава кон­центрата колеблется от 0.3 до 1.0 г/т. Штейн концентрирует основную массу пла­тиновых металлов. Содержание их в штейне колеблется в пределах 100-600 г/т.

Процесс плавки протекает в основном в восстановительном режиме, поэтому потери платиновых металлов в этом процессе определяются механическими потерями мелких корольков штейна, взвешенных в шлаковой фазе. Эти потери могут быть устранены флотацией шлаков с извлечением платиновых металлов в сульфидный концентрат. При этом извлечение платины может достигать более 99.0 %.

Конвертирование. Полученный при электроплавке штейн подвергается конвертированию. Конвертирование, цель которого состоит в возможно более полном удалении сульфида железа из никель-медных штейнов, осуществляется при температуре около 1200 °С. Процесс протекает в сульфидных расплавах, где активность платиновых металлов очень невелика. Поэтому в процессе конверти­рования в шлаковую фазу в очень незначительных количествах переходит платина (<0.5%), палладий (<0.5%), родий (<1.0%), иридий (<1.0%). Более того, конвертные шлаки перерабатываются в обеднительных печах, поэтому общие по­тери благородных металлов при конвертировании сравнительно малы.

При обжиге никелевого концентрата в печах кипящего слоя процесс окисле­ния протекает весьма интенсивно и поэтому сопровождается значительными потерями металлов.

Восстановительная электроплавка закиси никеля на металлический никель не вызывает значительных потерь платиновых металлов. Механические потери их с пылями могут быть уменьшены в результате совершенствования системы пыле­улавливания. Переход в шлаки не вызывает дополнительных потерь, так как шлаки в этом процессе являются оборотными продуктами.

Взвешенная плавка сульфидных материалов осуществляется в окислительной атмосфере при температуре около 1300 °С.

Пирометаллургическая переработка медных концентратов, содержащих платиновые металлы, включая обжиг при 800-900 °С, отражательную плавку, конвертирование и огневое рафинирование меди. В последние годы для перера­ботки медных концентратов широкое применение получили автогенные про­цессы: взвешенная плавка и плавка в жидкой ванне.

Химические реакции и температурный режим обжига медных концентратов примерно те же, что при агломерации.

Гидрометаллургические процессы.

Платиновые металлы, содержащиеся в сульфидных медно-никелевых рудах, проходят через пирометаллургические операции, концентрируются в черновом металле и поступают на электролитическое рафинирование никелевых и медных анодов. Причем в зависимости от условий проведения этих операций большее или меньшее количество платиновых металлов может переходить в сборные или оборотные продукты, что в конце концов приводит к безвозвратным потерям.

Таблица 6.

Формы нахождения платины в сульфатных, сульфатно-хлоридных и хлорид­ных растворах.

Растворы
Сульфатный сульфатно-хлоридный хлоридный

[Pt2(SO4)4·(H20)2]2-

[PtCl4]2-  при jа<1.4 В;

[PtCl6]2- при jа>1.4 В.

[PtCl4]2-  при jа<1.4 В;

[PtCl6]2- при jа>1.4 В.

При содержании в сплавах 0.01-1.0 % платинового металла, он замещает в кристаллической решетке сплава атомы никеля или меди, не образуя самостоя­тельных структур.

Известно, что в присутствии сульфидной, оксидной и металлической фаз пла­тиновые металлы концентрируются в металлической фазе. Поэтому в никелевых и медных промышленных анодах, содержащих в качестве примесей сульфидные и оксидные фазы, платиновые металлы равномерно распределены в металличе­ской фазе, образуя кристаллическую решетку замещения. Это приводит к образо­ванию в решетке сплава микроучастков (зон) с более положительным равновес­ным потенциалом. Металлы в этих зонах не растворяются при потенциале работающего анода и выпадают в нерастворимый осадок - шлам. В случае повы­шения потенциала анода до величины, соответствующей потенциалу ионизации платиновых металлов, начинается переход этих металлов в раствор. Степень перехода будет увеличиваться, если в растворе платиновые металлы образуют стойкие комплексные соединения.

Таким образом поведение платиновых металлов при электрохимическом рас­творении анодов будет определяться потенциалом анода, составом раствора и природой растворяемого сплава.

Переработка платинусодержащих шламов.

При электролитическом рафинировании меди и никеля платиновые металлы концентрируются в анодных шламах, где их содержание в зависимости от состава исходных руд колеблется в широких пределах, от десятых долей до нескольких процентов.

В соответствии с основными теоретическими положениями в шламы при растворении анодов практически без изменения переходят оксиды и сульфиды цветных металлов. Поэтому основными фазовыми составляющими никелевого шлама являются сульфиды меди и никеля (a-Cu2S, b-Cu2S, Ni3S2, NiS), оксиды (NiO, CuO, Fe2O3, Fe3O4), ферриты (NiFe2O4, CuFeO2). Платиновые металлы в шламах представлены рентгеноаморфными металлическими формами.

Непосредственная переработка бедных по содержанию благородных метал­лов продуктов, в состав которых входят значительные количества цветных металлов, железа и серы, на аффинажных предприятиях не производится. Поэтому анодные шламы предварительно обогащают различными пиро- и гидро­металлургическими методами с получением концентратов платиновых металлов. Технологические схемы обогащения шламов, применяемые на различных заводах, различаются между собой.

Существующие схемы построены на селективном растворении цветных ме­таллов, содержащихся в шламах. Благородные металлы при этом остаются в нерастворенном осадке, который направляют на аффинажное производство. Раствор, содержащий сульфаты цветных металлов, идет в основное производство. Во многих случаях для улучшения растворения цветных металлов шламы прохо­дят предварительную пирометаллургическую подготовку (обжиг, спекание, восстановительную плавку и т.д.).

Переработка шламов методом сульфатизации.

 Метод основан на том, что сульфиды, оксиды и другие соединения цветных металлов при взаимодействии с концентрированной серной кислотой при темпе­ратуре выше 150°С образуют сульфаты, которые при последующем выщелачива­нии переходят в раствор:

MeS+4H2SO4=MeSO4+4H2O+4SO2;

MeO+H2SO4=MeSO4+H2O;

Me+2H2SO4=MeSO4+2H2O+SO2;

Me2S+6H2SO4=2MeSO4+6H2O+5SO2.

Благородные металлы должны концентрироваться в нерастворимом остатке. Технологическая схема сульфатизации шлама приведена ниже:

      Влажный шлам

                    H2SO4

      Репульпация

 

      Сульфатизация

 

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10