рефераты

рефераты

 
 
рефераты рефераты

Меню

Реферат: Мониторинг загрязнения водной среды реки Херота с помощью методов биоиндикации рефераты

Необходимость корректировки величин ПДС возникает в том случае, если при биотестировании воды из контрольно­го створа водного объекта установлено несоответствие ее качества требуемому нормативу: вода в контрольном створе водного объекта не должна оказывать хронического токси­ческого действия на тест-объекты (дафний или цериодафний).

При необходимости корректировки величин ПДС применяют методику длительного биотестиоования с исполь­зованием дафний или цериодафний. Определяют минимальную кратность разбавления сточной воды на сбросе в водный объект, при которой не проявляется хро­ническое токсическое действие, и сравнивают ее с расчетной кратностью общего разбавления сточных вод в контрольном створе. В качестве контрольной и разбавляющей использу­ют воду водного объекта, отобранную вне зоны влияния те­стируемой сточной воды.

Если расчетная кратность n общего разбавления сточных вод в контрольном створе меньше, чем необходимая кратность nт разбавления сточной воды, определенная при биотестировании, и не может быть увеличена за счет изменения конструкции или местоположения выпуска, величину ПДС корректируют в сторону уменьшения.

Результаты биотестирования устанавливают токсич­ность сточных вод вне связи с конкретными веществами. По­этому, если не известно, какое именно вещество оказало ток­сическое воздействие, корректировку ПДС производят за счет уменьшения существующего расхода сточных вод q до величины qmax, обеспечивающей выполнение условия ­­

n≥nт                                                                                                           

При этом скорректированную величину ПДС по каждому ве­ществу определяют согласно формуле

ПДС’=(qmax/q)*ПДС                                                                                (3.2)

Для выпуска сточных вод в водоток величина расхо­да сточных вод существенно влияет только на основное раз­бавление, определяемое в соответствии с формулой.

При этом максимальный расход сточных вод qmax, удовлетворяющий условию (3.2), определяют из решения уравнения

            1+Рm                                     nт

1+Pmexp (-ά V Pm)              nн                                                                                                       (3.3)

        где Pm=Q/ qmax;  ά = φ&V3DL/Q, Q — расчетный  расход водотока, м3/с; φ — коэффициент извилистости (отношение расстояния от выпуска до контрольного створа по фарвате­ру к расстоянию по прямой); & коэффициент, зависящий от места выпуска сточных вод (при выпуске у берега &=1, при выпуске в стрежень реки &=1,5); 1 — расстояние от вы­пуска до контрольного створа по фарватеру, м; D — коэф­фициент турбулентной диффузии, определяемый в соответ­ствии с формулами.

Для выпуска сточных вод в водоем величина расхода сточных вод влияет только на начальное разбавление, опре­деляемое в соответствии с формулами. При этом максимальный расход сточных вод qmax, удовлетво­ряющий условию (3.2), определяют следующим образом:

при выпуске в мелководье или в верхнюю треть глубины

                                             n0 – 0,1 * nт

qmax = 0,00215 • v • H2cp                                                                           (3.4)

                                                 nт – n0

при выпуске в нижнюю треть глубины

                                             n0 – 0,05 * nт

qmax = 0,00158 • v • H2cp                                                                           (3.5)

                                                   nт – n0

где: v — скорость ветра над водой в месте выпуска сточных вод, м/с; Н2ср—средняя глубина водоема вблизи выпуска, м:

n0 — кратность основного разбавления, определяемого по формулам.

Если состав сточных вод хорошо изучен и возможно установить, какое именно вещество оказало токсическое воз­действие, корректировку величины ПДС по этому веществу с обязательным последующим биотестированием производят за счет уменьшения концентрации этого вещества в сточных водах. Минимальное значение параметра kmin, показывающего во сколько раз необходимо уменьшить концентрацию веще­ства в сточных водах, определяют по формуле

                                         kmax

kmin                                                                                                                             

                   n                    

                             1 +             (kmax – 10)                                                   (3.6)

                                        nт

где: kmax = CПДС/Сф; СПДС       - концентрация вещества     в сточных водах при существующем ПДС, г/м3; Сф—концентрация вещества в воде водного объекта при отсутствии сброса сточ­ных вод, г/м3. При этом скорректированную величину ПДС’ оп­ределяют согласно формуле

                        ПДС

ПДС’                                                                                                          (3.7)

                         kmin    

Если определенное  из  условия (3.6) значение kmin технически нереализуемо, выбирают достижимое значение и производят дальнейшую корректировку ПДС за счет умень­шения существующего расхода сточных вод, заменяя всюду nт величиной (10).

              СПДС – kСф         nт

Nтк                           *                                                                                (3.8)

               СПДС – Сф         К 

Глава 4. Результаты мониторинговых наблюдений реки Херота.

Река Херота на всей своей протяженности несет воды загрязненные различными веществами, несвойственными для природной среды. Различные антропогенные источники загрязнения сбрасывают отходы своей деятельности в реку. Это завод железобетонных изделий, автозаправочная станция,  чайная фабрика, различные объекты пищевой промышленности (хлебозавод, виноводочный завод, пищекомбинат, столовые и кафе). За счет того, что река протекает через микрорайон «Чайсовхоз» и пересекает автомагистраль Федерального значения, не малый вклад в загрязнение реки вносит инфраструктура города. Это и автотранспорт, и железнодорожный транспорт. Непосредственная близость аэропорта также оказывает прямое и косвенное воздействие. Расположенные на склоне локаторы Адлерского аэропорта привносят электромагнитное и радиационное загрязнение(9).

Но максимальное количество загрязняющих веществ поступает в реку на самом первом метре ее течения. Это районная свалка бытовых и промышленных отходов. Это не просто свалка бытовых отходов, которая технологически неустроена, а это просто место, на которое производится выброс мусора, бытовых отходов и частично промышленных. Основной проблемой данной свалки является то, что она расположена на оползневом участке, на склоне горы,  и интенсивные дожди приводят к постоянным сползаниям грунта, да и всей свалки, в озеро Серебряное и реку Херота(4).

Используя рекогносцирующее исследование можно с уверенностью говорить о том, что река находится под большой антропогенной нагрузкой. Эта нагрузка происходит постоянно, а процессы самоочищения реки, за счет ассимиляционного потенциала территории малозначительны в виду того, что загрязнение происходит по всей территории реки, начиная с самых истоков и вплоть до устья. Не маловажен и тот факт, что уровень грунтовых рек в данном районе намного ниже, чем по всему Адлерскому району, поэтому не происходит так называемое «разбавление» загрязненных вод.

Зная все это и используя методики определения вредных веществ для контроля источников загрязнения окружающей среды  был намечен план сбора данных по источникам и отбора проб воды.

Данные по источникам загрязнения, помимо рекогносцирующих характеристик объектов, были получены из архивов предприятий расположенных в бассейне реки Херота.

На протяжении всей длины реки были установлены пробные площадки для подсчета количеств загрязняющих веществ поступающих в реку, с использованием методов биоиндикации и биотестирования.

Основной  целью было проверить на практике методики биоиндикации и биотестирования водных объектов и сравнить полученные данные с данными, полученными в результате лабораторными исследованиями. Данные о химическом загрязнении были взяты из отчетов Адлерского отдела санэпиднадзора.

Такое расположение пробных площадей неслучайно и, прежде всего, связано с самими источниками загрязнения. В результате такого расположения пробных площадей все русло реки было разделено на три участка, которые соответственно пришлись на верхнюю, среднюю и нижнюю часть реки.

Из рекогносцирующих исследований видно, что средний участок реки несет максимальную нагрузку, связанную с большим количеством источников загрязнения. Это и завод железобетонных изделий, и автозаправочная станция, и чайная фабрика, и локаторы аэропорта, и инфраструктура района, и различные объекты пищевой промышленности (хлебозавод, виноводочный завод, столовые и кафе),(прил.2).

Исследования проводились в период с 05 января 2001 года по 15 марта 2001 года. Пробы отбиралась каждые десять дней по всем пробным площадям и трансекте строго по методике, и руководствуясь ГОСТ 17.1.5.05.-85.

Все расчеты проводились по методике биоиндикации и биотетсированию водных объектов, представленной выше.

В результате исследований были обнаружены следующие результаты.

Загрязнение реки Херота происходит по всему руслу, но плотность загрязнения неравномерна.

При биотестировании воды реки Херота вывод о наличии хронического токсического действия  сделан на основании установления достоверности различия между показате­лем выживаемости или плодовитости дафний в контроле и в тестируемой воде. Для этого  были рассчитаны среднее арифметическое показателей выживаемости и пло­довитости в контрольной и тестируемой воде.

Результаты биотестирования разбавления тестируемой воды с целью их использования при установлении величин ПДС или определения степени хронического токсического действия тес­тируемой воды обрабатывались с помощью вышеописанных приемов. Были определены минимальная кратность разбавления тестируемой воды, при которой различия между величинами показателей выживаемости и плодовитости дафний в конт­роле и соответствующем разбавлении совпадали.

В результате отбора проб были получены следующие значения числа особей дафний на пробных площадях(табл.4.1).

                                                                                                       Таблица 4.1

Число особей дафний на пробных площадях

дата отбора пробы пр.пл 1 пр.пл 2 пр.пл 3 пр.пл 4 сумма среднее контроль
05.01.2001 8 12 6 8 34 8,5 16
15.01.2001 9 11 4 6 30 7,5 19
25.01.2001 11 17 8 11 47 11,75 21
04.02.2001 12 17 7 10 46 11,5 18
14.02.2001 11 15 4 8 38 9,5 20
24.02.2001 10 19 9 12 50 12,5 22
06.03.2001 15 21 12 16 64 16 27
15.03.2001 21 25 18 20 84 21 34

Необходимость корректировки величин ПДС в зависимости от полученных результатов возникает в том случае, если при биотестировании воды из контрольно­го забора пробы реки Херота установлено несоответствие ее качества требуемому нормативу: вода в контрольном створе реки Херота не должна оказывать хронического токси­ческого действия на тест-объекты (дафний или цериодафний).

Используя эти данные и руководствуясь методикой мной были проведены расчеты по определению токсичности воды реки Херота.

Результаты биотестирования устанавливают токсич­ность сточных вод вне связи с конкретными веществами. Так как не известно, какое именно вещество оказало ток­сическое воздействие, корректировку ПДС производят за счет подсчета особей дафний в контрольном створе воды.

По всем пробным площадям получились следующие значения загрязнения реки, то есть превышение ПДС(табл.4.2)

                                                                                                      Таблица 4.2

Значения загрязнения реки

Дата отбора пробы пр.пл 1 контроль Превышение ПДС
05.01.2001 8 16 2
15.01.2001 9 19 2,1
25.01.2001 11 21 1,9
04.02.2001 12 18 1,5
14.02.2001 11 20 1,8
24.02.2001 10 22 2,2
06.03.2001 15 27 1,8
15.03.2001 21 34 1,6
пр.пл 2 контроль
05.01.2001 12 16 1,3
15.01.2001 11 19 1,7
25.01.2001 17 21 1,2
04.02.2001 17 18 1,1
14.02.2001 15 20 1,3
24.02.2001 19 22 1,2
06.03.2001 21 27 1,3
15.03.2001 25 34 1,4
пр.пл 3 контроль
05.01.2001 6 16 2,7
15.01.2001 4 19 4,7
25.01.2001 8 21 2,7
04.02.2001 7 18 2,6
14.02.2001 4 20 5
24.02.2001 9 22 2,4
06.03.2001 12 27 2,3
15.03.2001 18 34 1,9
пр.пл 4 контроль
05.01.2001 8 16 2
15.01.2001 6 19 3,2
25.01.2001 11 21 1,9
04.02.2001 10 18 1,8
14.02.2001 8 20 2,5
24.02.2001 12 22 1,8
06.03.2001 16 27 1,7
15.03.2001 20 34 1,7

Из таблицы 4.2 видно, что загрязнение реки происходит на всем ее протяжении и составляет в среднем 2,1 ПДС.

Анализируя данные о химическом загрязнении реки Херота, которые были взяты из отчетов Адлерского отдела санэпиднадзора, выяснилось, что загрязнение ее водной среды по различным видам загрязнителей составляли от 0,7 до 8,3 ПДС. Средним же выявлено загрязнение реки до уровня 2,3 ПДС. Отсюда следует, что методика биоиндекации и биотестирования не только достоверно дает информацию о количественном загрязнении, но и более полно отображает сами последствия загрязнения реки. Конечно говорить об универсальности такой методики было бы неверно за счет ее специфичности, но на практике возможно ее применение, тем более, что себестоимость такой методики гораздо ниже стоимости методик химического анализа.

Применение данной методики приемлемо в оценки количественного загрязнения водной седы, но для оценки качественного состава загрязнения необходимо применять другие методики, в том числе и комплексную методику биоиндикации водоемов, в которой рассмотрено влияние определенных видов загрязнителей на определенные виды-индикаторы.

То, что касается непосредственно самой реки Херота, то из рисунка 4.1 четко видно, что динамика загрязнения реки по руслу обусловлена большой концентрацией антропогенных объектов в районе средней части реки. Большее количество загрязнения попадает в реку именно здесь, и поэтому количество дафний в пробах, отобранных на третей пробной площади минимально. Улучшение ситуации, хотя и не сильное, на четвертой пробной площади связано с природным ассимиляционным потенциалом территории, но видно, что он не настолько высок, чтобы справиться со всем количеством загрязнителей(рис.4.1).

Рис. 4.1. Влияние количества загрязнения и его распространение на жизнедеятельность дафний в русле реки Херота.

Сезонная динамика, представленная на рисунке  4.2, связана прежде всего с климатическими условиями среды, нежели с антропогенной нагрузкой.

 

Рис. 4.2. Рост численности популяции дафний во времени.

Выводы

Проведенные исследования дают возможность сделать следующие выводы:

1. Проблема реки Херота это не только чистая вода, не только сохранение природных ландшафтов и памятников природы, но и сохранение генетического фонда растений и животных для будущего поколения. Еще не известно, какие растения и животные могут оказаться полезными для человека, но можно с уверенностью утверждать, что все виды необходимы для природы, для ее развития и существования. А для их жизнедеятельности первостепенное значение приобретает качество природной воды реки Херота.

2. Контроль состояния наземных и водных экосистем осуществляется преимущественно по физико-химическим характеристикам. В мониторинге же кроме этого необходимо применять и биологические показатели: особенности структуры сообществ, соотношение отдельных групп видов фауны и флоры, по количественному их развитию и т.д. В целях биоиндикации биологические показатели следует рассматривать  структурные характеристики.

3. Для гидробиологического анализа качества вод могут быть использованы практически все группы организмов, населяющие водоемы: планктонные и бентосные беспозвоночные с особой ролью простейших, водоросли, макрофиты, бактерии и грибы. Каждая из них, выступая в роли биологического индикатора, имеет свои преимущества и недостатки, которые и определяют границы ее использования при решении задач биоиндикации.

4. Анализ проведенных исследований позволил рекомендовать использование разнообразия дафний как основы при проведении биоиндикационных исследований на различных водотоках. Создание базы данных позволило оценить структуру и динамику донных сообществ водотоков, дать предложения по оценке качества воды равнинных рек, оценить видовое разнообразие, дать рекомендации методического характера. При использовании дафний, как биоиндикаторов, должны осуществляться следующие правила: биоиндикация должна проходить в относительно короткий промежуток времени и объекты для биоиндикации должны быть многочисленными и обладать одинаковыми качествами.

5. Методика  биоиндикации основана на определении изменений выживаемости и плодовитости дафний при воздействии токсических веществ, содержащихся в тестируемой воде по сравнению с контролем.

6. Применение данной методики приемлемо в оценки количественного загрязнения водной седы, но для оценки качественного состава загрязнения необходимо применять другие методики, в том числе и комплексную методику биоиндикации водоемов, в которой рассмотрено влияние определенных видов загрязнителей на определенные виды-индикаторы.

7. Анализируя данные о химическом загрязнении реки Херота, которые были взяты из отчетов Адлерского отдела санэпиднадзора, выяснилось, что загрязнение ее водной среды по различным видам загрязнителей составляли от 0,7 до 8,3 ПДС. Средним же выявлено загрязнение реки до уровня 2,3 ПДС. Сезонная динамика, представленная на рисунке, связана прежде всего с климатическими условиями среды, нежели с антропогенной нагрузкой. С помощью метода биоиндикации установлено, что водная среда реки Херота не соответствует требованиям нормального качества воды и степень ее загрязнения значительно превышает ПДС. Поэтому необходима срочная организация мероприятий по очистке сточных вод, сбрасываемых в реку, и сокращению объемов сточных вод.

8. Таким образом можно считать, что методика биоиндекации и биотестирования не только достоверно дает информацию о количественном загрязнении, но и более полно отображает сами последствия загрязнения реки. Конечно говорить об универсальности такой методики было бы неверно за счет ее специфичности, но на практике возможно ее применение, тем более, что себестоимость такой методики гораздо ниже стоимости методик химического анализа.

Список литературы.

1.              Глобальная сеть Iternet http://www.ecos.ru - Биоиндикация состояние малых рек Краснодарского края.

2.              Лозановская И. Н., Орлов Д. С., Садовникова Л. К. Экология и охрана биосферы при химическом загрязнении: Учеб. Пособие для хим., хим-технол. и биол. спец. Вузов.1:-м.: «Высшая школа», -1998. –287 с.: ил.

3.              Воронов Ю.Н. О древностях Сочи и его окрестностях 1:  Краснодар: Краснодарское книжное издательство, -1991, -190 с.: ил.

4.              Зверев К. В. Адлер. Историко-географический очерк. 1: Краснодар: Краснодарское книжное издательство, -1973, -112 с.: ил.

5.              Ефремов Ю. В. В стране горных озер. 1: Краснодар: Краснодарское книжное издательство, -1991, -192 с.: ил.

6.              Ефремов Ю. В. Голубое ожерелье Кавказа. 1: Краснодар: Краснодарское книжное издательство, -1998, -160 с.: ил.

7.              Канонников А. Н. Природа Кубани и Причерноморья. 1: Краснодар: Краснодарское книжное издательство, -1977, -112 с.: ил.

8.              Большая советская энциклопедия. 2: -М.: Государственное начное издательство, том 27, -1953, -664 с.: ил.

9.              Печорин А. И. Природа Кубани: надежды и тревоги. 1: Краснодар: Краснодарское книжное издательство, -1989, -176 с.: ил.

10.           Сборник методик и инструктивных атериалов по определению вредных веществ для контроля источников загрязнения окружающей среды: часть 1, под редакцией Л. П. Ярмака: 1: Краснодар: «Северный Кавказ», - 1993, -224 с.

11.           Глобальная сеть Iternet http://www.ecos.ru - Методика организации мониторинговых наблюдений.

12.           Розенберг В.Г. Теория биоиндикации. 1.-М.: «Высшая школа», -1994г.,- 141с.: ил.

13.           Мамаев А.Д., Ворбъев Ю.Д. Методическое руководство по биотестированию воды. 1.-М.: «Высшая школа», -1991г.,- 160с.: ил.

14.           ГОСТ Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда, и атмосферных осадков. –1985г.

15.           Инструкция по отбору проб сточной воды НВН 33-5.3.01-85.

Приложение 1.


Фотография 1. Исток реки Херота – озеро Серебряное.

Приложение №2


Страницы: 1, 2, 3, 4