рефераты

рефераты

 
 
рефераты рефераты

Меню

Реферат: Качество воды рефераты

            Однако даже при отсутствии континентальных отложений и наличии юрских глин часты случаи получения воды со значительным содержанием железа из – за недостатков конструкции скважин, если глины пройдены насквозь колонной обсадных труб и ожелезенные воды четвертичных отложений проникают в скважину.

            Различные соединения железа содержатся в коре выветривания карбона, поэтому верхние его слои толщиной 2–3 м надлежит надежно перекрывать обсадными трубами даже с подбашмачной цементацией. Соединения железа наблюдаются и в глинах, разделяющих, касимовский и гжельский горизонты верхнего карбона. Их также следует изолировать глухими участками труб. Наблюдаются случаи, когда трубчатые колодцы дают воду с большим содержанием железа в результате неправильного крепления их обсадными трубами. При неплотном соприкосновении стенок колодца с верхнеюрскими глинами по затрубным пространствам в него проникают воды четвертичных отложений, содержащие значительное количество железа.

            Интересно отметить, что в подземных водах железо почти всегда встречается вместе с серо водородом. Сероводород переводит окисное, нерастворимое в воде железо, в закисное – растворимое. В водопроводных сооружениях сероводород улетучивается, закисное железо под действием кислорода воздуха переходит в окисное, а затем в выпадающий в осадок гидрат окиси железа. Появление сероводорода в подземных водах можно объяснить за счет гниения органических соединений. В связи с этим на территории, где в подземные воды проникают органические вещества в  воде обнаруживается сероводород и железо (районы г.г. Люблино и Люберцы ). Воды с повышенным содержанием железа отличаются значительной окисляемостью. Это также справедливо для восточных районов области, где имеются большие площади, занятые торфяником.

                  В Московской области используют почти исключительно водоносные горизонты, достаточно хорошо защищенные водонепроницаемой кровлей глин. Несмотря на это известны несколько случаев ухудшения качества подземных вод из –за нарушения защищенности водоносного горизонта от интенсивных поверхностных загрязнений или по причине редкого возрастания водоотбора. Так в  городе Люберцы и его окрестностях на части территории качество подземных вод значительно изменилось. Например, содержание хлоридов с 3–5 мг / л возросло до 70–120 мг / л содержание железа возросло в 6–10 раз и составляет порядка 4–5 мг / л.

   Однако, несмотря на значительное изменение химического состава подземных вод, в бактериологическом отношении их качество осталось неизменно высоким. Изменение качества подземных вод в данном случае можно объяснить влиянием Люберецких полей фильтрации в результате некоторого нарушение защитных слоев на территории города, а также заметно возрос отбор воды.

               Ярким примером нежелательного ухудшения качества подаваемых вод в результате загрязнения являются случай на заводе « Акрихин » (поселок Купавна ). На территории завода были пробурены еще в 1935 г два трубчатых колодца, снабжавшие водой завод и жилой поселок. Первоначально вода полностью отвечала требованиям ГОСТа на питьевую воду, однако вскоре колодцы стали подавать воду неудовлетворительного качества с большим количеством органики и неприятными специфическими вкусом и запахом с явными признаками производственных стоков завода. Это вынудило к бурению новых трубчатых колодцев для хозяйственно – питьевого водоснабжения. Последние пробурены на территории поселка на расстоянии 3 – 4 км от действующих. Заводские скважины были выведены на производственное водоснабжение и избежание распространения загрязнений по водоносному горизонту их пришлось усиленно откачивать. Причиной загрязнение подземных вод действительно явились производственные стоки завода. Обработка сточных вод завода ранее была предусмотрена на полях фильтрации, расположенных выше по течению потока подземных вод. В результате размыва водоупорных глинистых слоев водоносный горизонт на значительной территории оказался покрыт лишь слоем песка (порода с хорошим коэффициентом фильтрации ). Мощность песков оказалась недостаточной и почти неочищенные производственные стоки, вступая в контакт подземными водами, ухудшали их качество.

   Таким образом, можно сделать осторожный вывод о том, что в течение будущих десятилетий будет наблюдаться тенденция к переходу водоснабжения городов и поселков Московской области из поверхностных или открытых источников воды.

Г Л А В А   2

            Оценка качества воды  в источниках водоснабжения

2.1. Анализ воды и форма его выражения

             При оценке качества воды, предназначенной для удовлетворения хозяйственно – питьевых потребностей, обычно используется анализ ( тип 2 ), в процессе которого определяются : физические свойства ( температура, запах и вкус, прозрачность или мутность, цветность), Cl-, SО42-, НСО3-, СО32-, NO3-, Са2+,Мg2+, Fе2+, Fе3+, рН, СО2 ( свободная ), сухой остаток Р, NO2-, NН4+ и  окисляемость. Анализ дает общую характеристику воды и производится в полустационарных или стационарных условиях. При этом можно контролировать анализ по сухому остатку с вычислением суммы К+  + Nа+ по разности.

            В отдельных случаях ( главным образом для подземных вод ) может потребоваться подробный анализ  с дополнительным определением Nа+, К+, Мn2+, Fе2О3 + АI2O3, SiO2, агрессивной СО2, Н2S. Этот вид анализа позволяет произвести общий контроль определений не только по сухому остатку, но и по суммам мг – экв анионов и катионов.

            Наиболее распространенными формами выражения концентрации химических веществ являются объемная ( мг / л ) и нормальная ( мг – экв /л ) ; в более редких случаях концентрацию выражают в весовой ( мг / кг ) и молярной ( г – мол / л ) форме. В любом случае результаты анализа могут быть представлены в виде солей ( NаСl, Са SO4 и т.д. ), окислов ( Nа2О, СаО и т.д.), ангидридов (SO3, N2O5 и т. д.) или в ионной форме. Последняя форма наиболее полно отражает действительное состояние веществ, растворенных в воде, их диссоциацию, облегчает и ускоряет проверку анализа, и потому в настоящее время является общепринятой. Следует, однако, иметь в виду, что при этой форме выражения неионизированные или очень мало ионизированные соединения (чаще всего трехвалентного железа, алюминия, кремния) обозначаются в виде соответствующих окислов ( Fe2O3, Аl2O3, Si02 ), а растворенные неионизированные газы – всегда их формулами ( СО2, Н2S, О2 ).

                При пересчете концентраций, выраженных в солевой или окисно – ангидридной форме, в ионную форму содержание соли, окисла или ангидрида умножают на отношение молекулярных весов данного иона и соответствующего ему соединения. Например, содержание Са2+ в исследуемой воде при окисной форме выражения анализа, т.е через СаО, оказалось равным [Са] = 100 мг / л. Молекулярные веса: Са = 40,08, СаО = 56,08.                                     40,08

                Следовательно: [Cа2+] =  = 71,5 мг / л.

                В таблице 1 в качестве примера приведен химический анализ воды  с определениями, выраженными в ионной и окисло – ангидридной формах записи.

Форма выражения химического состава воды.

                                                                                Таблица  1.

Ионная форма Окисно – ангидридная форма
Наименование определений Молекулярный или ионный вес Эквивалентный вес Концентрация Наименование определений Молекулярный вес Концентрация в мг /л
в мг /л в мг – экв / л

Сl-

35,46 35,46 17,73 0,5

Сl2

70,91 35,46

SO42-

96,07 48,03 72,04 1.5

SO3

80,07 60

НСО3-

61,02 61,02 122,04 2

СО2

44 88

СО3-2

60,01 30,01 0 0

СО2

44 0

NО3-

62,01 62,01 31 0,5

N2O5

108 54

Са2+

40,08 20,04 60,12 3 СаО 56,08 84

Мg 2+

24,32 12,16 12,16 1 МgO 40,32 20,16

Fе 2+

55,85 27,93 Следы FеО 71,81 Следы

Fе3+

55,85 18,62 не обнаружено

Fе2О3

159,7 не обнаружено
рН - - 7 рН - 7

СО2 ( свободная )

44 22 22 1

СО2 (свободная )

44 22
Сухой остаток - - 300 300 мг /л Сухой остаток - 300

NO2-

46 46 следы

NO3

76 следы

NН4+

18,03 18.03 не обнаружено

NН3

17.03 не обнаруженно
окисляемость - - 18 18 мг /л окисляемость - 18

   Для пересчета концентрации Со, выраженных в мг /л, в СЭ (мг – экв/л) используется соотношение

Где Э – эквивалент на вес данного вещества

Решающим показателем санитарного состояния воды является титр кишечной палочки (коли титр или коли индекс). Дополнительной характеристикой бактериальной загрязнённости служит число зародышей

в одном литре исследуемой воды.  

2.2. Проверка результатов анализа.

           Приступая к изучению анализов воды, необходимо прежде всего убедиться в их правильности.

          Правильность определения физических свойств (температуры. цветности, мутности или прозрачности, запаха и вкуса) может быть проверена только при поммощи повторных определений в аналогичных условиях; поэтому проектировщик, как правило, должен иметь серии анализов для одних и тех же точек и условий отбора. При количественной оценке мутности воды следует помнить, что этот показатель имеет наибольшую ценность при сравнении проб, но дает лишь приближенное представление о фактическом содержании взвешенных веществ. Последние для расчетных грязевых нагрузок должны быть определены весовым способом.

          Для контроля химического анализа сравнивают суммарное количество всех нелетучих составных частей, определенных анализов, с величиной сухого остатка. Естественно, что из –за неточностей в определениях всегда будет наблюдаться разница в сравниваемых величинах. Но, как правило, вес сухого остатка оказывается не более чем на 7 – 12 % выше суммы ионов солей. Такового рода контроль исключает возможность появления ошибки в анализе, а в отдельных случаях указывает на необходимость дополнительных определений.

         Не следует забывать, что при вычислении суммы ионов солей нужно брать только половину найденного анализом содержания НСО3-.

        Сумма всех нелетучих в мг / л по анализу определяется из выражения

Р = Сl- + SO4-2  + ½ НСО3-2 + Са2+ +Мg2+ + Nа+    ( 2 )

         Величину Nа+ находят по разности содержания отрицательных и положительных ионов. При нормальной форме выражения концентрации ( в мг – экв /л ) имеем  

где К+  + Na+ - определяемое по разности содержание калия и натрия в мг – экв/л; 

Σа – сумма мг – экв анионов ;

ΣКОПР– сумма мг – экв катионов, включенных в анализ.

             Сумму щелочных ионов К+ + Nа+, выраженную в мг – экв/л, пересчитывают в мг /л по эквивалентному весу Nа+, равному 23, и вводят в формулу ( 2 ). Такой пересчет приводит к сравнительно небольшой ошибке, обычно не превышающей 1,6 % суммы всех составных частей общего солесодержания ( содержание К+ + Nа+ в общей сумме ионов, так же как и К в сумме К+ + Nа+, составляет не более 20 % ).

             Кроме общего контроля анализа по сухому остатку следует сопоставить результаты некоторых отдельных определений.

1)   Содержание в воде СО3-2, НСО3- и свободной СО2 сопоставляют с величиной рН. Зависимость между этими величинами применительно к открытым источникам, не содержащим СО3-2, с температурой природной воды 22С, определяют из формулы       рН = 6,37 – lgCco2 + lgCнсо3- +lgf(1) ,     ( 4 ).

где Ссо2 – концентрация свободной углекислоты в мг / л ;

Снсо3 – концентрация НСО3- в мг /л ;

f(1) – коэффициент активности НСО3-.

   Использование номограммы ( рис 1.2, существенно облегчает проверку определения СО2, НСО3- и рН. Например, по таблице 1 при [CO2 ] = 22 мг /л щелочность определяемая концентрацией НСО3, равна 2 мг /л ; для этих значений по номограмме ( при t = 20С ) имеем, что рН такой воды должно быть равно 6,9. Прямое определение показало, что рН = 7. Таким образом, отклонение составляет 0,1. Допустимая разница не должна превышать 0,2. Следовательно, аналитические определения СО2, НСО3 и рН проведены правильно.

Страницы: 1, 2, 3, 4, 5, 6, 7