рефераты

рефераты

 
 
рефераты рефераты

Меню

Реферат: Билеты по физике рефераты

Очевидно, что масса выделившегося вещества равна произведению массы одного иона m0j на число ионов  Nj, достигших электрода за время Δt: m= m0j Nj.      Масса иона

где М — молярная (или атомная) масса вещества, а

Число ионов, достигших электрода, равно:

Закона электролиза Фарадея.  масса вещества выделившегося на электроде за .время Δt при прохождении электрического тока, пропорциональна силе тока и времени.

Применения электролиза.

 Электролитическим путем покрывают поверхность одного металла тонким слоем другого {никелирование, хромирование, омеднение и т. п.). Это прочное покрытие защищает поверхность от коррозии.

В полиграфической промышленности такие копии (стереотипы) получают с матриц (оттиск набора на пластичном материале), для чего осаждают на матрицах толстый слои железа или другого материала. Это позволяет воспроизвести набор в нужном количестве экземпляров.

При помощи электролиза осуществляют очистку металлов от примесей. Так, полученную из руды неочищенную медь отливают в форме толстых листов, которые затем помещают в ванну в качестве анодов. При электролизе медь анода растворяется, примеси, содержащие ценные и редкие металлы, выпадают на дно, а на катоде оседает чистая медь.

Билет№17

Наиболее отчетливо полупроводники отличаются от проводников характером зависимости электропроводимости от температуры. Измерения показывают, что у ряда элементов (кремний, германий, селен и др.) удельное сопротивление с увеличением температуры не растет, как у металлов, а наоборот, чрезвычайно резко уменьшается. Такие вещества и называют полупроводниками.

Дырочная проводимость. При разрыве связи образуется вакантное место с недостающим электроном. Его называют дыркой. В дырке имеется избыточный положительный заряд по сравнению с остальными. Один из электронов, обеспечивающих связь

атомов, перескакивает на место образовавшейся дырки и восстанавливает здесь парноэлектронную связь, а там, откуда перескочил этот электрон, образуется новая дырка. Таким образом, дырка может перемещаться по всему кристаллу.

Полупроводники обладают не только электронной, но и дырочной проводимостью-

собственной проводимостью полупроводников.

Собственная проводимость полупроводников обычно невелика, так как мало число свободных электронов. Число свободных электронов составляет примерно о у десятимиллиардную часть от общего числа атомов.

Существенная особенность полупроводников состоит в том, что в них при наличии примесей наряду с собственной проводимостью возникает дополнительная — примесная проводимость.  Изменяя  концентрацию примеси, можно значительно изменять число носителей заряда того или иного знака. Благодаря этому можно создавать полупроводники с преимущественной   концентрацией либо отрицательно, либо положительно заряженных носителей.

Применение:

Полупроводниковый диод – применяется для выпрямления электрического тока в радиосхемах. В p-n переходе носители заряда образуются при введении в кристалл акцепторной или донорской примеси. Здесь отпадает необходимость использования источника энергии для получения свободных носителей заряда. Экономия энергии получается значительной. Полупроводниковые выпрямители более миниатюрны, чем электронные лампы. Радиоустройства на полупроводниках намного компактнее. Полупроводниковые элементы используются на искусственных спутниках Земли, космических кораблях, электронно-вычислительных машинах. Полупроводниковые диоды изготовляют из германия, кремния, селена и др. веществ. Они обладают высокой надежностью и имеют большой срок службы, но ограничены интервалом температур от –70 до 125 градусов С.

Транзисторы.   Заменяют электронные лампы во многих электрических цепях научной, промышленной и бытовой аппаратуры. Портативные радиоприемники, использующие такие приборы, в обиходе называют транзисторами. Преимущество : отсутствие накаленного катода, потребляющего значительную мощность и требующего времени для его разогрева. Транзисторы в десятки и сотни раз меньше по размерам и массе, чем электронные лампы. Работают при более низких напряжениях. Недостатки те же, что и у полупроводниковых диодов.

Термисторы.  Один из самых простых полупроводниковых приборов. Выпускаются в виде стержней, трубок, дисков, шайб и бусинок размером от микрометров до нескольких сантиметров. Термисторы применяются для дистанционного измерения температуры, противопожарной сигнализации и т.д. Диапазон измеряемых температур большинства термисторов  лежит от 170 до 570 К. Существуют термисторы для измерения очень высоких до1300 и очень низких 4-80 К температур.

Фоторезисторы (фотосопротивления). Электрическая проводимость полупроводников повышается не только при нагревании, но и при освещении. Данный эффект наблюдается и при неизменной температуре. Фоторезисторы - приборы, в которых используют фотоэлектрический эффект в полупроводниках. Миниатюрность и высокая чувствительность фоторезисторов позволяют использовать их в самых различных областях науки и техники для регистрации и измерения слабых световых потоков. С помощью фоторезисторов определяют качество поверхностей, контролируют размеры изделий и т.д.


Билет№18

Откачивая газ из сосуда, можно дойти до такой его концентрации, при которой молекулы успевают пролететь от одной стенки сосуда к другой, ни разу не испытав соударении друг с другом. Такое состояние газа в трубке называют вакуумом.

Проводимость межэлектронного промежутка в вакууме можно обеспечить только с помощью введения в трубку источника заряженных частиц.

Термоэлектронная эмиссия. Чаще всего действие такого источника заряженных частиц основано на свойстве тел, нагретых до высокой температуры, испускать электроны. Этот процесс называется термоэлектронной эмиссией. Его можно рассматривать как испарение электронов с поверхности металла. У многих твердых веществ термоэлектронная эмиссия начинается при температурах, при которых испарение самого вещества еще не происходит. Такие вещества и используются для изготовления катодов.

Односторонняя проводимость. Явление термоэлектронной эмиссии приводит к тому, что нагретый металлический электрод в отличие от холодного непрерывно испускает электроны. Электроны образуют вокруг электрода электронное облако. Электрод при этом заряжается положительно, и под влиянием электрического поля заряженного облака электроны из облака частично возвращаются на электрод.

В равновесном состоянии число электронов, покинувших электрод в секунду, равно числу электронов, возвратившихся на электрод за это время. Чем выше температура металла, тем выше плотность электронного облака.

Различие между горячим и холодным электродами, впаянными в сосуд, из которого откачан воздух, приводит к односторонней проводимости электрического тока между ними.

При подключении электродов к источнику тока между ними возникает электрическое поле. Если положительный полюс источника тока соединен с холодным электродом (анодом), а отрицательный — с нагретым (катодом), то напряженность электрического поля направлена к нагретому электроду. Под действием этого поля электроны частично покидают электронное облако и движутся к холодному электроду. Электрическая цепь замыкается, и в ней устанавливается электрический ток. При противоположном включении источника напряженность поля направлена от нагретого электрода к холодному. Электрическое поле отталкивает электроны облака назад к нагретому электроду. Цепь оказывается разомкнутой.

Диод. Односторонняя проводимость используется в электронных приборах с двумя электродами — вакуумных диодах.

Устройство современного вакуумного диода (электронной лампы) таково. Внутри баллона из стекла или металлокерамики, из которого откачан воздух до давления 10~6— 10~7 мм рт. ст., размещены два электрода (рис. 173, а). Один из них— катод — имеет вид вертикального металлического цилиндра, покрываемого обычно слоем оксидов щелочноземельных металлов, например бария, стронция, кальция. Такой катод называют оксидным.

При нагревании поверхность ок-сидного катода выделяет гораздо больше электронов, чем поверхность катода из чистого металла. Внутри катода расположен изолированный проводник, нагреваемый переменным током. Нагретый катод испускает электроны, достигающие анода, если анод имеет более высокий потенциал, чем катод.

Свойства электронных пучков и их применение.

 При торможении быстрых электронов, попадающих на вещество, возникает рентгеновское излучение. Некоторые вещества (стекло, суль фиды цинка и кадмия), бомбардируемые* электронами, светятся. В настоящее. время среди материалов этого типа (люминофоров') применяются такие, у которых в световую энергию превращается до 25% энергии электронного пучка.

Электронные пучки отклоняются электрическим полем. Например, проходя между пластинами конденсатора, электроны отклоняются от отрицательно заряженной пластины к положительно заряженной (рис. 177).

Электронный пучок отклоняется также в магнитном поле. Пролетая над северным полюсом магнита, электроны отклоняются влево, а пролетая над южным, отклоняются вправо (рис. 178). Отклонение электронных потоков, идущих от Солнца, в магнитном поле Земли приводит к тому, что свечение газов верхних слоев атмосферы (полярные сияния) наблюдается только у полюсов.

Возможность управления электронным пучком с помощью электрического или магнитного полей и свечение покрытого люминофором экрана под действием пучка применяют в электронно-лучевой трубке.

Электронно-лучевая трубка. Электронно-лучевая трубка — основной элемент телевизора и осциллографа*— прибора  для  исследования быстропеременных процессов в электрических цепях (рис. 179).

Устройство электронно-лучевой трубки показано на рисунке 180 Трубка представляет собой вакуумный баллон, одна из стенок которого служит экраном. В узком конце трубки помещен источник быстрых электронов — электронная пушка (рис. 181). Она состоит из катода, управляющего электрода и анода (чаще несколько анодов располагаются друг за» другом). Электроны испускаются нагретым оксидным слоем с торца цилиндрического катода С, окруженного теплозащитным экраном //. Далее они проходят через отверстие в цилиндрическом управляющем электроде В (он регулирует число электронов в пучке). Каждый анод ai и Л 2 состоит из дисков с небольшими отверстиями. Эти диски вставлены в металлические цилиндры. Между первым анодом и катодом создается разность потенциалов в сотни и даже тысячи вольт. Сильное электрическое поле ускоряет электроны, и они приобретают большую скорость. Форма, расположение и потенциалы анодов выбраны так, чтобы наряду с ускорением электронов осуществлялась и фокусировка электронного пучка, т. е. уменьшение площади поперечного сечения пучка на экране почти до точки.

На пути к экрану пучок последовательно проходит между двумя парами управляющих пластин, подобных пластинам плоского конденсатора (см. рис. 180). Если электрического поля между пластинами нет, то пучок не отклоняется и светящаяся точка располагается в центре экрана. При сообщении разности потенциалов вертикально расположенным пластинам пучок смещается в горизонтальном направлении, а при сообщении разности потенциалов горизонтальным пластинам он смещается в вертикальном направлении.

Одновременное использование двух пар пластин позволяет перемещать светящуюся точку по экрану в любом направлении. Так как масса электронов очень мала, то они почти мгновенно реагируют на изменение разности потенциалов управляющих пластин.

В электронно-лучевой трубке, применяемой в телевизоре (так называемом кинескопе), управление пучком, созданным электронной пушкой, осуществляется с помощью магнитного поля. Это поле создают катушки, надетые на горловину трубки (рис. 182).


Билет №19

Электрический разряд в газе.

Возьмем электрометр с присоединенными, к нему дисками плоского конденсатора и зарядим его. При комнатной температуре, если воздух достаточно сухой, конденсатор заметно не разряжается. Это показывает, что электрический ток, вызываемый разностью потенциалов в воздухе между дисками, очень мал. Следовательно, электрическая проводимость воздуха при комнатной температуре мала и его можно считать диэлектриком.

Теперь нагреем воздух между дисками горящей спичкой. Заметим, что стрелка электрометра быстро приближается к нулю, значит, конденсатор разряжается. Следовательно, нагретый газ является проводником и в нем устанавливается электрический ток.

Процесс протекания электрического тока через газ называют газовым разрядом.

Ионизация газов. Мы видели, что при комнатной температуре воздух очень плохой проводник. При

нагревании проводимость воздуха возрастает. Увеличение проводимости воздуха можно вызвать .и иными способами, например действием излучений: ультрафиолетового, рентгеновского, радиоактивного и др.

При обычных условиях газы почти полностью состоят из нейтральных атомов или молекул и, следовательно, являются диэлектриками. Вследствие нагревания или воздействия излучением часть атомов ионизуется — распадается на положительно заряженные ионы и электроны. В газе могут образовываться и отрицательные ионы, которые появляются благодаря присоединению электронов к нейтральным атомам.

Ионизация газов при нагревании объясняется тем, что по мере нагревания молекулы движутся быстрее. При этом некоторые молекулы начинают двигаться так быстро, что часть из них при столкновениях распадается, превращаясь в ионы. Чем выше температура, тем больше образуется ионов.

Проводимость газов. Механизм проводимости газов похож на механизм проводимости растворов и расплавов электролитов. Разница состоит в том, что отрицательный заряд переносится в основном не отрицательными ионами, как в водных растворах или расплавах электролитов, а электронами.

Несамостоятельный разряд. Для исследования разряда в газе при различных давлениях удобно использовать стеклянную трубку с двумя электродами.

Пусть с помощью какого-либо ионизатора в газе образуется в секунду определенное число пар заряженных частиц: положительных ионов и электронов.

При небольшой разности потенциалов между электродами трубки положительно заряженные ионы перемещаются к отрицательному электроду, а электроны и отрицательно заряженные ионы — к положительному электроду. В результате в трубке возникает электрический ток, т. е. происходит газовый разряд.

Не все образующиеся ионы достигают электродов; часть их воссоединяется с электронами, образуя нейтральные молекулы газа. По мере увеличения разности потенциалов между электродами трубки доля заряженных  частиц,   достигающих электродов, увеличивается. Возрастает и сила тока в цепи. Наконец, наступает момент, при котором все заряженные частицы, образующиеся в газе за секунду, достигают за это время электродов. При этом дальнейшего роста тока не происходит. Ток, как говорят, достигает насыщения. Если действие ионизатора прекратить, то прекратится и разряд, так как других источников ионов нет. По этой причине разряд называют несамостоятельным разрядом.

Самостоятельный разряд.

Опыт показывает, что в газах при увеличении разности потенциалов между электродами, начиная с некоторого значения, сила тока снова возрастает. Это означает, что в газе появляются дополнительные ионы сверх тех, которые образуются за счет действия ионизатора. Сила тока может возрасти в сотни и тысячи

раз, а число ионов, возникающих в процессе разряда, может стать таким большим, что внешний ионизатор будет уже не нужен для- поддержания разряда. Если убрать внешний ионизатор, то разряд не прекратится. Так как разряд не нуждается для своего поддержания во внешнем ионизаторе, его называют самостоятельным разрядом.

Тлеющий разряд. При низких в трубке наблюдается тлеющий разряд. Для возбуждения тлеющего разряда достаточно напряжения между электродами в несколько сотен  вольт. При тлеющем разряде почти вся трубка, за исключением небольшого участка возле катода, заполнена однородным свечением, называемым положительным столбом.

Тлеющий разряд используют в трубках для реклам. Положительный столб в аргоне имеет синевато-зеленоватый цвет.

Электрическая дуга. При соприкосновении двух угольных стержней

в месте их контакта из-за большого сопротивления выделяется большое количество теплоты. Температура повышается настолько, что начинается  термоэлектронная  эмиссия. Вследствие этого при раздвижении угольных электродов между ними начинается разряд. Между углями возникает столб ярко светящегося газа—электрическая дуга (рис. 193). Проводимость газа в этом случае значительна и при атмосферном давлении, так как число электронов, испускаемых отрицательным электродом, очень велико.

Если увеличивать силу тока при тлеющем разряде, то температура катода за счет бомбардировки ионами увеличится настолько, что начнется дуговой разряд. Таким образом, для возникновения дугового разряда не обязательно предварительное сближение электродов.

Дуговой разряд — мощный источник света, его используют в прожекторах.

Другие типы самостоятельного разряда. При атмосферном давлении вблизи заостренных участков проводника, несущего большой электрический заряд, наблюдается газовый разряд, светящаяся область которого напоминает корону. Этот разряд, называемый коронным, вызывается высокой (около 3*106 В/м) напряженностью электрического поля вблизи заряженного острия.

При очень низких температурах все вещества находятся в твердом состоянии. Нагревание вызывает переход вещества из твердого состояния в жидкое. Дальнейшее повышение температуры приводит к превращению жидкости в газ.

При достаточно больших температурах начинается ионизация газа за счет столкновений быстро движущихся атомов или молекул. Вещество переходит в новое состояние,

называемое плазмой. Плазма—это частично или полностью ионизованный газ, в котором плотности положительных и отрицательных зарядов практически совпадают.

Свойства плазмы.

1.    Из-за большой подвижности заряженные частицы плазмы легко перемещаются под действием электрических и магнитных полей.

2.    Между частицами плазмы действуют кулоновские силы, сравнительно медленно убывающие с расстоянием.

3.    Каждая частица взаимодействует сразу с большим количеством окружающих частиц. Частицы плазмы могут участвовать в упорядоченных движениях.

4.    Проводимость плазмы увеличивается по мере роста степени ионизации. При высокой температуре проводимость плазмы приближается к сверхпроводникам.

Билет №20

1 Магнитная проницаемость. Постоянные магниты могут быть изготовлены лишь из немногих веществ, но все вещества, помещенные в магнитное поле, намагничиваются, т. е. сами создают магнитное поле. Благодаря этому вектор магнитной индукции В в однородной среде отличается от вектора Во в той же точке пространства в вакууме.

Отношение           характеризующее магнитные свойства среды, получило название магнитной     

                                проницаемости среды.

 В однородной среде магнитная индукция равна:                  где m магнитная проницаемость данной среды.

Магнитные свойства любого тела определяются замкнутыми электрическими токами внутри него.

Парамагнетиками называются вещества, которые создают слабое магнитное поле, по направлению совпадающее с внешним полем. Магнитная проницаемость наиболее сильных парамагнетиков мало отличается от единицы: 1,00036- у платины и 1,00034- у жидкого кислорода. Диамагнетиками  называются вещества, которые создают поле, ослабляющее внешнее магнитное поле. Диамагнитными свойствами обладают серебро, свинец, кварц. Магнитная проницаемость диамагнетиков отличается от единицы не более чем на десятитысячные доли.

Ферромагнетики и их применение. Вставляя железный или стальной сердечник в катушку, можно во много раз усилить создаваемое ею магнитное поле, не увеличивая силу тока в катушке. Это экономит электроэнергию. Сердечники трансформаторов, генераторов, электродвигателей и т. д. изготовляют из ферромагнетиков.

При выключении внешнего магнитного поля ферромагнетик остается намагниченным, т. е. создает магнитное поле в окружающем пространстве. Упорядоченная ориентация элементарных токов не исчезает при выключении внешнего магнитного поля. Благодаря этому существуют постоянные магниты.

Постоянные магниты находят широкое применение в электроизмерительных приборах, громкоговорителях и телефонах, звукозаписывающих аппаратах, магнитных компасах и т. д.

Большое применение получили ферриты — ферромагнитные материалы, не проводящие электрического тока. Они представляют собой химические соединения оксидов железа с оксидами других веществ. Первый из известных людям ферромагнитных материалов—магнитный железняк — является ферритом.

I Температура Кюри. При температуре, большей некоторой определенной для данного ферромагнетика, ферромагнитные свойства его исчезают. Эту температуру называют температурой Кюри. Если сильно нагреть намагниченный гвоздь, то он потеряет способность притягивать к себе железные предметы. Температура Кюри для железа 753 °С, для никеля 365 °С, а для кобальта 1000°С. Существуют ферромагнитные сплавы, у которых температура Кюри меньше 100°С.


Страницы: 1, 2, 3, 4