рефераты

рефераты

 
 
рефераты рефераты

Меню

Техногенная россыпь Андрее-Юльевского участка рефераты

По последней отработке россыпей была установлена принципиальная возможность получения концентратов кианита (рис. 8) и кварцевого песка. После неоднократного перемыва при добыче золота произошло естественное обогащение песков кварцевым материалом, кианитом и другими полезными компонентами. По результатам проведенных ранее работ, ориентировочное среднее содержание кианита в песках Еленинской россыпи составляет 3,3 %, Андреевской – около 2 %. Основная масса кианита (до 80 %) сосредоточена в классах песков крупностью от 1 до 20 мм. Преобладающим компонентом техногенных песков после отмывки глинистой составляющей является кварц (91,2-94,6%), который может оцениваться как попутное полезное ископаемое в качестве формовочного, стекольного и строительного песка. Из других потенциально полезных компонентов в рыхлых отложениях присутствует рутил (свыше 2 г/м3), ильменит (свыше 5 г/м3), магнетит (свыше 10 г/м3), монацит и др.

Концентраты кианита из Еленинской россыпи были изучены в ЦНИИолово (г. Новосибирск). Их химический состав характеризуется следующими средними содержаниями (в %): SiO2 -37,78-43,86; Al2O3 - 49.13 -54.94; TiO2 -0,66; Fe2O3 4,04-4,17; MnO 0,03-0,50; MgO 0,01; CaO – 0,16-0,30; Na2O - 0,3; K2O – 0,06-0,10 (Лепезин, 2003).


Глава 7. Технология обогащения и промышленное значение кианитовых руд Андрее-Юльевского участка


Как уже говорилось, Андрее-Юльевские пески неоднократно перемывались, и поэтому почти не содержат глинистого материала.

 Фракция +7 мм, на которые приходится в среднем 7%, практически без кианита. Наиболее богатые кианитом фракции 7-5, 5-3, 3-2, 2-1 (соответственно 13,1, 17,1, 18,0 и 9,4 мас.%) (рис. 8).



 Рис. 8. Гранулометрический состав кианита


Доля этих фракций относительно общей горной массы составляет 27%. На фракции менее 1 приходится более 66% горной массы: кварц = 90-95%, кианит = 2-5%, гематит = 3-5%.

 Технология обогащения сводится к следующему. Пески рассеиваются на три фракции: 1) +7; 2) -7+1; 3) -1.


 Рис. 9. Кианитовый концентрат полученный разработаны предварительные схемы при обогащении Андрее - Юльевских песков обогащения техногенных образований


Первая группа фракций без кианита, засорена лимонитом и ее можно выбрасывать или использовать на отсыпку дорог. Из второй группы фракций выделяется кианит (рис. 9), хвосты обогащаются кварцем. В третьей группе фракций преобладающим является кварц. При его обогащении кианит накапливается в хвостах, которые могут идти на повторный передел. Следует иметь в виду, что здесь же будут концентрироваться золото и рутил.

 На основе полученных данных (2009 г.) о минералогии и гранулометрическом составе техногенных образований Еленинской россыпи были

 Ресурсы кианита обследованного участка Еленинской техногенной площади в пределах выделенных техногенных отвалов, по данным Г. Г. Лепезина, составляют 103,5 тыс.т. Площадь отвалов составила 1377569 м2. Площадная продуктивность составит 75,1 кг/м2 (Лепезин, 2003).

 Таким образом, простое рассеивание (грохочение) позволяет на начальной стадии обогатительного процесса сократить объем горной массы в 3–4 раза, увеличив при этом во столько же раз количество кианита в ней.

 В Восточном институте огнеупоров (ВОСТИО (г. Екатеринбург)) под руководством крупнейшего специалиста д.г.м.н. В. А. Перепелицина были проведены огнеупорные исследования кианитовых концентратов. Получены огнеупорные характеристики концентратов и приготовленных из них изделий, разработана технология производства высокоглиноземистых огнеупоров. На основании приведенных исследований сделано следующее заключение: кианитовые концентраты Андрее-Юльевских россыпей являются перспективным минеральным сырьем для производства качественных муллито-кремнеземистых огнеупорных материалов и изделий.


Рис. 10. Принципиальная технологическая схема обогащения кианитовых песков



Опыты с тем же концентратом проводились и на Нижнетагильском металлургическом комбинате под руководством главного огнеупорщика Э. В. Вислогузовой. Итоговые выводы: концентрат может быть использован как составная часть в различных алюмосиликатных массах и бетонах непосредственно на металлургических производствах, например для желобных масс, сталеразливочных и промежуточных ковшей и т.д., а также пригоден для получения плавленых муллит-корундового состава материалов.

Электротермическим методом из кианита получают кремне-алюминиевый сплав - силумин, широко используемый в автомобиле- и самолетостроении.

С точки зрения освоения и последующей эксплуатации наиболее выгодное положение на Урале занимают коренные месторождения и проявления: М-Брусянское, Абрамовское, Сосновское, Косулинское, Карабашское (Уфимское), Мало-Каслинское, Борисовское, Михайловское. Они находятся в регионе с развитой инфраструктурой и недалеко от железных дорог. Практически все месторождения могут быть отработаны открытым способом. Руды легко обогащаются. Содержание глинозема в кианитовых концентратах достигает 62 %.

Разведанные запасы минералов группы силлиманита в нашей стране в целом в пересчете на конечный продукт – алюминий, превышают 400 млн. тонн. Если его производить в количестве 3,5 млн. тонн в год, как это делается сейчас, то руд хватит более чем на 120 лет.

Руды имеют предельно простой состав (кианит с кварцем в сумме составляют более 90%) и на их базе можно создать безотходное производство концентратов с выделением в качестве товарных продуктов кианита (на силумин, алюминий, огнеупоры, керамику и т.д.), кварца (в качестве формовочного и стекольного песка), мусковита и рутила.

В настоящее время у нас функционируют 11 алюминиевых заводов, из них 5 находятся в Сибири, 2 на Урале и 4 на западе и северо-западе страны. В сумме они производят порядка 3.5 млн. тонн алюминия в год, но собственным глиноземом обеспечены на 35-40% (Лепезин, 2003).


Глава 8. Особенности морфологии и состава кианита Андрее Юльевского участка и Борисовского месторождения


Для изучения кристаллов кианита, сравнения состава и составления типизации были выбраны кристаллы кианита, которые максимально отличаются по внешнему виду (по цвету, форме кристаллов, содержанию включений), и которые наиболее распространены в россыпях (образцы № 1, 4, 5, 6, 7, 8, 9, 10, 11, 12). Образцы № 2 и 3 отобраны из Борисовских сопок (копь Ферсмана).

 Большинство кристаллов кианита являются метакристаллами, в их анатомической картине видна «тень» текстуры вмещающего сланца.

 Образец 1

 Окатанный сросток расщепленных кристаллов кианита, размером 4Ч2 см, светло-серого цвета. На поверхности отмечаются ямки скалывания. Рыжеватую окраску дают окислы железа (рис. 11). В полированной пластинке образца (рис. 12) под бинокуляром наблюдаются включения красного рутила ( до 0,05 мм), а также есть черные включения магнетита( до 0.08 мм). Рутил и кианит имеют поверхности одновременного роста.


Рис. 11. Окатанный сросток расщепленных кристаллов кианита


Рис. 12. Полированная пластинка сростка расщепленных кристаллов кианита


Включения рутила изометричные, характерна прозрачность, нередко встречаются двойники. Отчетливо видны индукционные поверхности с кианитом.

Трещинки заполнены светлой слюдой – предположительно мусковитом.

Образец 2

Двойник кианита секториальный по (100) с развитыми гранями пинакоида. Цвет голубовато-синий. Размер обломка кристалла – 2,5Ч1 см. В кристалле наблюдаются включения красного рутила, а также мелкие черные включения ильменита. Также есть на поверхности включения слюды зеленого цвета. Индукционные поверхности с рутилом и мусковитом.

Кристалл трещиноват, по трещинам развит мусковит. Образец из слюдяных сланцев Борисовских сопок (копь Ферсмана).


Рутил Мусковит

абв

Рис. 13. Двойник кианита секториальный (а, б – образец, в – полированная пластинка)


Образец 3

Таблитчатый кристалл удлиненной по (001) формы, размером 3Ч0,7 см, светло-синего цвета. Имеются включения красного рутила, размером <1 мм, трещинки в кианите заполнены слюдой белого цвета – мусковитом. Наблюдается отдельность по (001).


                                                                     Отдельность

Мусковит

аб


в 

Рутил

Рис. 14. Кристалл кианита (а, б – образец, в – полированная пластинка)


Образец 4

Кристалл кианита расщепленный – 3 см по удлинению, беловато-серого цвета с голубыми просветами, серый цвет обусловлен, по-видимому с мелкими непрозрачными минералами. В кристалле есть включения красного рутила, размером до 0,05 мм, а также включения магнетита и ильменита. Трещины в кристалле заполнены пленками лимонита, который дает буроватый цвет.


а

б

Рис. 15. Кианит расщепленный ( а - фото образца, б - фото полированной пластинки)


Образец 5


 Рис. 16. Метакристалл зонально - а с другого более светлый, что соответствует секториальный с текстурной пирамидам нарастания граней разных простых тенью вмещающей породы. форм. В порах видны мелкие кристаллы кварца


Метакристалл зонально - секториальный. Наблюдается реликтовая горизонтальная слоистость от предшествующего кристаллического сланца. Размер обломка примерно 1,7 см по удлинению. В кристалле наблюдается большое количество мелких включений (< 0,5 мм) черного цвета (ильменит, магнетит), которые распределены послойно (тень текстуры сланца). Также вместе с включениями ильменита, магнетита, встречаются мелкие включения слюды. В центре кристалла находится светлый стержень, края заметно отличаются по голубому цвету, с одного края он более темный,

 По зонам в кианите был сделан микрозондовый анализ (табл.1-2), который показал, что в светло-голубой части присутствуют небольшие изоморфные примеси железа (0,52 мас.%) и хрома (0,89 мас.%), в светло-серой - хром (0,93 мас.%), в синей зоне - железа (0,58 мас.%) и хрома - (0,94 мас.%), следовательно, цвет меняется из-за присутствия небольших примесей Fe и Cr.


Таблица 1. Состав кианита и включений титаномагнетита (мас.%)

          № SiO2 TiO2 Al 2O3 Cr2O3 FeO V2O5 Сумма

  1 36,368 - 62,108 0,897 0,517 - 99,890

  2 35,070 - 63,955 0,947 - - 99,972

  3 34,327 - 65,099 0,948 0,584 - 100,958

  4 - 10,994 - - 88,157 0,548 99,699


Таблица 2. Эмпирические формулы кианита по зонам (1-3) и включений в кианите

  1

2

3

4

  Al1.99Cr0.02Fe0.01Si0.99O5

Al2.04Cr 0.02Si0.95O5

Al2.07Cr0.02Fe0.01Si0.93O5

Fe(Fe1.69Ti0,3V0,01)O4

  кианит

кианит

кианит

титаномагнетит


Образец 6


 Рис. 17. Кианит зонально- хрома до 0,35 мас.%. секториальный (1-15 – точки анализа по профилю)

 Кристалл зонально-секториальный – определяется по цвету – по краям кристалл зеленовато-синего цвета, а внутри «стержень» светло-серого цвета, размером 1.7Ч0.5 см. Имеются включения красного рутила, в том числе - идиоморфные с содержанием ванадия V2O5 1,55 мас.% и черные включения (ильменит), беспорядочно распределенные по кристаллу.

 Для прослеживания изменения состава в центральной части кристалла по зонам был сделан микрозондовый анализ по прямой линии перпендикулярно удлинению. В таблицах 3, 4 приведены данные анализа, из которых следует что цвет меняется вследствие присутствия железа и титана в виде небольших изоморфных примесей железа до 1 мас. %.


Таблица 3. Состав кианита по зонам(мас. %)

   № точки анализа SiO2 TiO2 Al 2O3 Cr2O3 FeO Сумма

  1 39,247 - 59,298 0,344 1,017 99,970

  2 38,168 - 61,771 0,095 0,901 100,936

  3 36,869 - 61,861 0,253 0,733 99,971

  4 39,239 0,217 59,355 0,344 0,811 100,007

  5 35,674 - 63,127 0,164 0,696 99,735

  6 36,520 0,184 62,866 0,197 0,675 100,443

  7 37,479 - 61,564 0,188 0,750 99,980

  8 37,724 0,166 60,910 0,169 0,688 99,657

  9 42,033 0,225 56,342 0,243 0,716 100,041

  10 38,331 - 60,677 0,236 0,679 100,019

  11 37,280 0,148 61,675 0,246 0,704 100,022

  12 40,508 - 58,094 0,308 1,048 100,031

  13 38,353 0,154 60,199 0,168 1,036 99,998

  14 39,392 0,206 58,757 0,299 0,980 99,831

  15 37,319 - 61,376 0,375 1,151 100,330


Таблица 4. Эмпирические формулы кианита по зонам

    1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

  Al1.90Fe0.03Cr 0.01Si0.06O5

Al1.95Fe0.02Si1.02O5

Al1.98Fe0.02Cr 0.01Si1.0O5

Al1.89Fe0.02Cr 0.01Si1.06O5

Al2.02Fe0.02Si0.97O5

Al2Fe0.02Si0.98O5

Al1.96Fe0.02Si1.02O5

Al1.95Fe0.02Si1.02O5

Al1.79Fe0.02Cr 0.01Ti0.01Si1.13O5

Al1.93Fe0.02Cr 0.01Si1.04O5

Al1.97Fe0.02Cr 0.01Si1.01O5

Al1.85Fe0.02Cr 0.01Si1.10O5

Al1.92Fe0.02Si1.04O5

Al1.88Fe0.02Cr 0.01Si1.07O5

Al1.96Fe0.03Cr 0.01Si1.01O5


Состав рутила (мас.%)


TiO2 FeO V2O5 сумма

  Рутил 97,249 0,926 1,574 99,954


Эмпирическая формула рутила


Ti1.98Fe0.01V0.01O2


По зонам кианита варьирут лишь изоморфные примеси Ti3+ , Cr3+ , Fe3+ (<1 мас.%), содержание которых не сказывается на качестве коммерческого типа кианита, а только меняется цвет. В более темных зонах (зеленовато-синих) содержание этих примесей больше, чем в центральной светло-серой зоне.

 По анализу включения в кианите определен кремнезем, сумма низкая, это, предположительно, опал.


Образец 7


 Рис. 18. Сросток расщепленных кристаллов кианита с включениями турмалина


Сросток расщепленных кристаллов кианита серого цвета, цвет обусловлен мелкими включениями (1 мм) черного дравита. Размер обломка кианита – 2Ч1,2 см. Также трещинки заполнены кварцем, размером до 0,4 мм, изометричной, округлой, немного вытянутой формы. Турмалин наблюдается в виде мелких иголочек черного цвета (размером 0,05Ч0,3 мм). На поверхности сростка наблюдается мусковит желтовато-белого цвета.

 Кианит имеет индукционные поверхности с мусковитом и турмалином.

 Из расчетов по микрозондовому анализу были определены включения в кианите кварца и дравита, а также кианит с изоморфной примесью FeO 15,3 мас.%.


Таблица 5. Состав кианита и минеральных включений (мас.%)

 № SiO2 TiO2 Al 2O3 Cr2O3 FeO MnO MgO CaO NA2O сумма   1 35,914 0,156 64,406 0,186 0,964 0,070 - - - 101,696   2 102,164 0,201 - 0,163 - 0,068 - - - 102,595   3 30,054 - 55,061 - 14,554 - - - - 99,669   4 38,270 - 33,858 0,104 4,651 - 8,967 - 2,952 100,302    Таблица 6. Эмпирические формулы кианита и минеральных включений

    1

2

3

4

  Al2,03Fe0.02Si0.96O5

Si1,0O2

Al1,91Fe0.04Si0.89O5

Na0.8Mg1.92Fe0.54Al5.4Si5.98(BO3) 3O18OH4

  кианит

кварц

кианит

дравит


Образец 8


 Рис. 19. Сросток кристаллов кианита


Сросток кристаллов темно-серого цвета до черного, размер 1,5Ч0.6 см. Есть включения кварца, изометричные, светло-серого цвета, размером 0,05-0,1 мм. Черный цвет кристалла обусловлен большим количеством включений титаномагнетита. На темном фоне светлые полосы, которые заполнены этими же включениями, но в меньшем количестве. В светлых частях кристалла под бинокуляром наблюдаются включения слюды. Кианит является реликтовым, так как наблюдаются «следы» текстуры предшествующей породы, предположительно сланца.


Таблица 7. Состав титаномагнетита и кианита (мас.%)

   № SiO2 TiO2 Al 2O3 Cr2O3 FeO сумма

  1 - 11,775 0,201 0,135 90,128 102,239

  2 36,811 - 63,696 - 1,401 101,908

    Таблица 8

 Эмпирические формулы включений в кианите и самого кианита:

   № Химический состав в кристалле кианита Наименование    1

2

  Fe(Fe1.67Ti00.32Al0.01)O4

Al2Fe0.03Si0.98O5

  Титаномагнетит

Кианит


Образец 9


 Рис. 20. Полированная пластинка зонального кристалла кианита с единичными включениями


Зональный, светло – голубого цвета по краям, внутри безцветный, размер 1,5Ч0.5 см. Включения черные, очень мелкие, единичные. Кристалл практически чистый. Наблюдается отложение лимонита по трещинам. Присутствуют единичные тонкие вростки красного рутила (0,05 мм). Присутствуют очень мелкие газово-жидкие включения, диагностика которых затруднена.


Образец 10


 Рис. 21. Полированная пластинка зонально-секториального кристалла кианита


Кристалл светло-голубого цвета (2,4Ч0.7 см), на индивиде сохранилась одна грань. Секториальность определяется различием цвета, в центре кристалла расположен светлый «стержень» (светло-голубой). В кристалле наблюдаются включения красного рутила – тонкопризматического (0,05мм), а также темные мелкие включения. Включения расположены ориентированно, в виде полос – текстура унаследованная от предшествующей породы.


Образец 11


 а

 

 б

 Рис. 22 Сросток расщепленных кристаллов кианита (а - фото образца, б фото полированной пластинки)


Расщепленные кристаллы, размером по удлинению около 2 см, серовато-желтого цвета. Наблюдаются включения темно-красного рутила ( < 0,5 мм), просвечивающего, с алмазным блеском. В кристалле, между блоками расщепления имеются скопления белой слюды - мусковита.


Образец 12


Рис. 23. Двойник зонального кристалла кианита


Полированная пластинка, параллельная (100)

Двойник кристалла кианита (2,7Ч1 см), голубого цвета, имеются включения мусковита. В кристалле наблюдается отдельность по (001). Встречаются рутил в виде темно-красных просвечивающих коротко-призматических кристалликов с сильным алмазным блеском, а также есть более крупные кристаллы рутила (размером до 0,1 мм), на которых отчетливо видны грани тетрагональной призмы и конечные грани дипирамиды, встречаются двойниковые сростки. Среди красных включений рутила встречаются черные включения магнетита и ильменита. Единичные зерна рутила в виде крестообразных двойниковых срастаний. Присутствуют включения апатита.

Также в кристалле наблюдается секториальность, которая проявляется в цвете: голубой-светло-голубой – голубой. Отложение лимонита по трещинам. Включения в кианите расположены хаотично.


Таблица 9. Состав рутила и кианита(мас.%)


SiO2 TiO2 Al 2O3 Cr2O3 FeO сумма

  рутил - 99,583 - 0,256 0,775 100,615

  кианит 39,898 - 59,258 0,177 0,636 99,970


Эмпирическая формула кианита:


Al1.5Fe0.01Si0.9O5


Эмпирическая формула рутила в кианите:


Ti0.99 Fe0.01O2


7.1 Гониометрия и вычерчивание кристалла кианита


Кристаллы столбчатые, зачастую уплощенные (досковидные), вытянутые по оси с. Главные формы - пинакоиды (100), (010) и (110) (рис. 25-2,3.). Сростки кристаллов чрезвычайно часты, двойниковой плоскостью служит обычно (100), а двойниковой осью - перпендикуляр к ней. Дистеновые двойники можно определить по наличию входящих углов, встречаются пересечения индивидов под углами, близкими к 60° (Минералы…1972), кроме того, наблюдаются расщепленные кристаллы кианита.

 В кристаллографическом отношении некоторые кристаллы кианита имеют ровные блестящие грани и пригодны для гониометрических измерений.

 Исследования геометрических свойств кристаллов борисовского кианита проведено В. В. Доливо-Добровольским, который измерил всего около 200 кристаллов.

 Мною был вычерчен монокристалл кианита с головкой. Кристалл прозрачный, светло-голубого цвета, размером 4Ч1 мм.

 На столике Федорова были измерены углы между гранями, затем вычислены координаты граней (Табл. 10), построена стереографическая проекция (рис. 24) и по полученным данным был вычерчен кристалл кианита в программе Shape 7.1.(рис. 25-1)


Таблица 10

   Грань Символ грани &phi; &rho;    c

b

a

m

M

q

v

o

z

  001

010

100

110

1-10

011

0-11

-111

-122

  73°51'

0°00'

73°44'

39°23'

122°25'

13°53'

163°55'

-46°51'

36°

  11°35'

90°00'

90°00'

90°00'

90°00'

39°23'

35°24'

39°30'

-14°


 Рис. 24. Стереографическая проекция кристалла кианита


Рис. 25. Кристаллы кианита: 1 - новый кристалл( по Кульмухаметовой М. Г.), 2 и 3 – Борисовское месторождение, Южный Урал (по Доливо- Добровольскому)


Таким образом, вычерченный кристалл является новым для данного участка, так как ранее такие кристаллы вычерчены не были. Эти данные позволяют судить о том, что на кристаллах кианита есть редкие простые формы, создающие собственные сектора роста, физически и химически потенциально отличные от секторов роста распространенных форм.


.2 Типы кианита


В техногенных россыпях на Андрее-Юльевском участке кианит встречается голубой, голубовато-серый, синий, коричневатый и бесцветный, в зернах типичного досковидного облика до 1-5 мм, с преобладанием граней пинакоидов (100), (010) и (001); огранение на головках редко. В составе обычны небольшие примеси Ti и Fe – в среднем 1 мас.%.

Общепринятой типизации кианита не существует. А.Н. Игумнов разделил Борисовские кианиты на два типа по цвету: «…к первому относится цветной дистен различных оттенков синего и зеленоватого цветов или собственно кианит», образованный в «кварцевых жилах», второй тип – «кианит серого цвета, вкрапленный в сланец». Первый тип «по облику столбчатый с сечением, часто близким к ромбическому и плоскопризматический с развитием граней (100), по которым часты двойники срастания, пластинчатый и пластинчато-лучистые агрегаты». Отмечает «включения кварца, слюды, рутила и турмалина». Второй тип – «одиночные кристаллы, имеют столбчатый (таблитчатый) облик, агрегаты лучистого строения, сросшиеся кристаллы, расположенные в параллельных плоскостях (слоями)». Отмечает, что «по чистоте кианит сланцев уступает кианиту кварцевых жил и обычными включениями в нем являются зерна кварца, красного рутила, слюда и редко черный шерл».

 Лепезин Г. Г. приводит кианит по коммерческим сортам.


Таблица 11. Характеристика кианита по коммерческим сортам (мас.%):

 Высший: Al2O3>57.0 TiO2 < 0.6 Fe2O3 < 0.5 Na2O+K2O < 1.0.   Первый: Al2O3=56.0 TiO2=0.8 Fe2O3=0.6 Na2O+K2O=1.2.   Второй: Al2O3=54.0 TiO2=1.2 Fe2O3=0.8 Na2O+K2O=1.5.   Третий: Al2O3=44.0 TiO2=2.0 Fe2O3=1.2 Na2O+K2O=1.6.

Эта классификация по химическому составу без учета форм вхождения примесей в кианит. Для технологических целей существенно понимание в каком виде титан и железо находятся в концентрате, так как из-за содержания большого количества включений концентрация примесей повышается – это может сильно сказаться на сортах кианитовых руд (рутил дает большое количество примесей титана, ильменит - титана и железа, кварц кремния, магнетит – железа).

 Тонкодисперсный рутил в кианите трудно извлекаем, что ограничивает области применения кианитового концентрата в промышленном использовании (требования по содержанию TiO2 для керамических материалов – не более 0.2, а в иных случаях 0.01%) (Щипцов, 1988).

 По проведенным мною исследованиям и наблюдениям кианит в техногенных россыпях Андрее-Юльевского участка (рис. 26) можно разделить по следующим критериям, и процентному содержанию в россыпях:

 По размеру: В техногенных россыпях при изучении наблюдались различные типы кристаллов кианита, которые отличаются размером – мелкие (<1 см) – 20%, средние (2,5-1 см) – 65%, крупные выделения (2,5-10 см) – 15%.

 По цвету: темные, почти черные – 5%, сине-зеленые - 3%, , синие – 12%, темно-синие 20%, серые – 60%.

 Цвет кианита обусловлен небольшими изоморфными примесями, который не влияет на современную принятую сортность руд: 1) Ti3+ , Cr3+ -дают синий цвет; 2) Fe3+- зеленый цвет.

 Серый цвет кианита обусловлен мелкими пылевидными включениями темных минералов – графита, ильменита, магнетита.

 По включениям:

 Кристаллы кианита отличаются включениями других минералов – в основном это зерна кварца - 7%, зерна красного рутила – 5%, видимые невооруженным глазом или под лупой, бинокуляром, включения ильменита – 5%, пластинки слюды – 3%, турмалин – 5% , магнетит – 5%.

 По облику: столбчатые – 10%, пластинчатые – 40%, часто встречаются расщепленные кристаллы – 50%. Не редко среди кристаллов кианита наблюдаются двойники срастания по различным законам ((100), (010), (001)) и крестообразные двойники прорастания.

 В большинстве случаев кианит в россыпях находится в виде плохо образованных веретенообразных кристаллов – так называемые «овсянка».

 Кианит отличается наличием зональности и секториальности.


 Рис. 26. Кианит россыпей (фото Попова В. А.)


Техногенная россыпь Андрее-Юльевского участка характеризуется неоднородностью распространения типов кианита, а также участок в разных частях характеризуется различным качественным и количественным составом.


7.3 Секториальное и зональное строение кристаллов кианита


При кристаллизации создаются одновременно растущие, но различные части кристалла, получающиеся за счет отложения вещества на разных гранях, ребрах, вершинах или разных участках иных поверхностей кристаллов кианита.

 Кристаллы кианита обладают секториальным строением (рис. 16, 17, 20, 21), поскольку они состоят из пирамид нарастания (секторов), число которых равно числу растущих граней кристаллов в соответствующий момент роста.

 Неодинаковость свойств секторов обусловлена неравномерным распределением между секторами: 1) изоморфных (структурных) примесей; 2) механических примесей.

 Предположительно, секториальный кианит в разных частях секторов, а также на разных гранях и ребрах кристалла имеет различные физические и химические свойства.

 Секториальность тесно сопряжена с зональностью. Уже сам механизм роста слоями вызывает слоистое строение пирамид нарастания граней, а наряду с этими – колебания хода кристаллизации с течением времени приводят к образованию более грубой зональности вплоть до макроскопической (рис. 17). Равным образом поверхности нарастания ребер и линии нарастания вершин отражают механизм слоистого роста и колебания хода отложения вещества, и также получают неоднородное сложение.

 Особенности внутреннего строения кианита устанавливаются макро- и микроскопически по различиям в таких свойствах минерала, как окраска, распределение изоморфных примесей и включений. Разные части в одном кристалле отличаются по химическому составу.

 Секториальность и зональность часто проявлены в одном и том же индивиде (рис. 21), формируются в растущем кристалле вместе, но различные пирамиды нарастания растут одновременно, тогда как отдельные зоны – последовательно.

 Секториальность и зональность здесь описаны как возможность использования специальных типов кианитов. Знание этих свойств может понадобиться, если потребуются такие типы кианита.


Заключение


В работе рассмотрен Андрее-Юльевский участок техногенных россыпей в Пластовском районе, содержащий промышленные концентации кианита, для применения которого требуется предварительное обогащение и освобождение от минеральных примесей, находящихся в кристаллах кианита.

 Приведенные в работе результаты изучения кианита позволяют сделать выводы, которые могут быть полезными в части подходов к решению задачи получения кианитовых концентратов высокого качества.

 Геологическое изучение Андрее-Юльевского участка показало, что кианит слагающий техногенную россыпь поступал из высоко метаморфизованных пород, претерпевших гидротермально-метасоматические преобразования, кварц-кианитовых жил, а также «труб» кианитовых слюдитов описанных А. И. Белковским (1999 г.).

 История изучения кианитовых руд очень поучительна, так как она отражает эволюционный переход от оценки их использования для получения алюминия, затем для производства силумина и, наконец, кианит становится практически ценным индустриальным минералом, химические и физические свойства которого стали предметом внимания.

 В работе установлено, что в техногенной россыпи Андрее-Юльевского участка присутствуют различные типы кианитов, отличающиеся по цвету, содержанию примесей и по облику кристаллов.

 Выявлены зональные и секториальные кристаллы кианита. Эти данные могут оказаться полезными в будущем при использовании специальных типов кианитов с определенными свойствами.

 Цвет кианитов обусловлен очень небольшими изоморфными примесями Fe, Cr, Ti, не влияющими на современную принятую сортность руд. Изоморфные примеси FeO и TiO2 достигают 1 мас.%.

  На сортность руд могут сильно влиять минеральные включения в кианите: рутил, ильменит, турмалин, кварц, магнетит, слюды. Количество минеральных включений варьирует от 5 до 15 об.%.

 Установлено, что наиболее загрязненными по минеральным примесям и химическому составу оказываются метаморфогенные типы сростков расщепленных кристаллов кианита. Наиболее чистыми оказываются кианиты голубого, синего и зеленовато-синего цвета из кварц-кианитовых жил.

 Также по изучению геологического строения Андрее-Юльевского участка можно сделать вывод о том, что в разных частях по качественному и количественному составу, россыпь не однородна.


Список использованной литературы


Белковский А. И., Нестеров А. Р., Белковская А. Я. Кианит и ванадийсодержащий рутил из карбонатитоподобных пород Борисовских сопок на Южном Урале// Материалы Уральской летней минералогической школы. Екатеринбург, УГГГА, 29 июля - 2 августа 1997, с. 191-194.

Белковский А. И., Нестеров А. Р. Редкометальные серицитолиты Урала// Карбонатиты Кольского полуострова - Сборник статей. - Санкт-Петербург: СпбГУ, 1999, 133 с.

Бетехтин А. Г. Курс минералогии : учебное пособие. — М. : КДУ, 2007. 720

Булах А. Г. Графика кристаллов (измерение, вычисление и вычерчивание). - М.: «Недра», 1971. 112 с.

Вертушков Г. Н., Авдонин В. Н. Таблицы для определения минералов по физическим и химическим свойствам: Справочник. – 2-е изд., перераб. И доп. М.: Недра, 1992. 489 с.

Григорьев Д. П., Жабин А. Г. Онтогения минералов (индивиды). - М.: «Недра», 1975. 316 с.

Доливо-Добровольский В. В. Исследование геометрических свойств кристаллов кианита из месторождения дер.Борисовки Качкарского района на Южном Урале. - М.: НКТП Государственное геолого-разведочное изд-во Ленинград, 1932. 43 с.

Игумнов А. Н., Кожевников К. Е. Уральские месторождения дистена (кианита). Труды ВИМС, вып.90, 1935. 70 с.

Кейльман Г. А. Мигматитовые комплексы подвижных поясов. - М.: Недра, 1974. 200 с.

Кейльман Г. А., Золоев К.К. Изучение метаморфических комплексов.– М.: Недра, 1989. 207 с.

Кисин А. Ю. Месторождения рубинов в мраморах (на примере Урала). Свердловск: УрО АН СССР. 1991. 131 с.

Колисниченко С. В., Попов В. А. «Русская Бразилия» на Южном Урале: Минералы рек Санарки, Каменки и Кабанки: Энциклопедия уральского камня. – Челябинск: изд-во «Санарка», 2008

Костов И. Кристаллография. М.: «Мир», 1965. 522 с.

Львов Б. К. Петрология, минералогия и геохимия гранитоидов Кочкарского района (Южный Урал). - Л.: Изд. ЛГУ, 1965. 164 с.

Минералы. Справочник. Том 3, выпуск 1, Силикаты с одиночными и сдвоенными кремнекислородными тетраэдрами. Главный редактор академик Ф. В. Чухров. - М.: изд-во Наука, 1972.

Попов Г. М., Шафрановский И. И. Кристаллография. Издание третье, исправленное и дополненное. М.: Государственное научно-техническое изд-во литературы по геологии и охране недр. 1955. 295 с.

Сначев В. И., Демин Ю. И., Романовская М. А., Щулькин В. Е. Тепловой режим становления гранитоидных массивов. БНЦ УрО АН СССР. Уфа, 1989.

Херлбат К., Клейн К. Минералогия по системе Дэна. Пер. с англ. - М.: Недра, 1982

Фондовые материалы:

Коротеев В. А. Отчет по проекту «Минералы группы силлиманита – новый вид сырья для производства высокоглинозёмистых огнеупоров, глинозёма, силумина и алюминия» Екатеринбург: Уральское отделение РАН, 2009

Коротеев Д. В. Кианит, как вид сырья для производства высокоглиноземистых огнеупоров (на примере техногенных россыпей Андрее-Юльевского участка Челябинской области). Екатеринбург: ИнГиГ УрО РАН, 2008

Лепезин Г. Г. Стратегия развития сырьевой базы алюминиевой промышленности России. Институт минералогии и петрографии СО РАН, 2003

Савичев А. Н. Проект на проведение геологоразведочных работ на Андрее Юльевском участке Челябинской области. Екатеринбург, 2009. 36 с.

Щипцов В. В., Скамницкая Л. С. и др. Хизоварское кианитовое поле (Северная Карелия) . Петрозаводск, 1988. 105 с.


Страницы: 1, 2, 3