рефераты

рефераты

 
 
рефераты рефераты

Меню

Розробка Штормового родовища рефераты


gradP0=0,107+qradРпл, 3.2.9)

gradPР4=0,122+qradРпл, (3.2.10)


Таким чином, тріщини, що розкриваються під час ГРП у свердловинах Чорного моря, мають орієнтацію близьку до вертикальної.

Витрата рідини. Усі методи розрахунку потрібної витрати рідини під час ГРП базуються на лабораторних чи промислових експерементальних даних.

За G-D Ю.П.Желтова використовують аналітичні рішення, наведені для розрахунку розмірів тріщини. Водночас, додатково, за формулами Гірстма і Де Клерка, враховують витрати рідини в стінки тріщини. Це аналітично складний метод, який потребує застосування ПЕОМ.

Інший підхід полягає в окремому розрахунку витрати рідини, необхідної для перенесення піску по тріщині qтр, і витрати рідини для компенсації фільтраційних витрат рідини через її стінки. Отже, потрібна витрата рідини


 qmіn = qтр + qф (3.2.11)


 (3.2.12)

 

Звідси



де qтр – витрата по тріщині, л/с; h i w - висота вертикальної тріщини та її ширина, см; m - в’язкість рідини-пісконосія, мПа × с.

Витрату рідини для компенсації кількості відфільтрованої рідини розраховують, використовуючи дані лабораторного експеременту. Визначають фільтрацію даної рідини через одиницю поверхні натурального зразка породи, що підлягає ГРП, а потім розраховують:


 qф = 4 hL qф1 (3.2.13)


де qф – витрата рідини для компенсації фільтраційних витрат, л/с; qф1 – фільтраційні витрати на одиницю поверхні з двох сторін тріщини, л/(с × см2); h i L- висота та довжина півтріщини, см.

Відомий також простий і надійний підхід для планування витрат рідини під час ГРП з достатньою точністю. Для цього використовують вже описаний спосіб дослідження окремої свердловини на приймальність.

Очікувану найменшу й найбільшу витрату рідини під час ГРП визначають з точністю до 20% за такими залежностями:


 qР4 = 4 Кпр(Рр4 -Рпл), (3.2.14)

 qm = Aq Кпр(1,06Рр4 -Рпл), (3.2.15)


де Аq=4…8. Зазначимо, що Аq=8 застосовують для рідин з в’язкістю, близькою до в’язкості пластової рідини, а Аq=4 для рідин з в’язкістю на два порядки більшою.

Тиск на гирлі свердловини визначають для заданих діаметра НКТ, глибини спуску, густини рідини і піску, концентрації піску в рідині, в’язкості рідини та її витрат.

Тиск на гирлі свердловини під час ГРП


 Рр.г=РРm-Pгс.т+Рвтр, (3.2.16)


де Рвтр – втрати тиску під час нагнітання рідини; Pгс.т - тиск гідростатичного стовпа рідини, який визначають з урахуванням густини рідини.

Маса закріплювача тріщин. Для свердловин глибиною до 3000 м, закріплювачем тріщин може бути кварцовий пісок, що відповідає ТУ 39-982-84. Звичайно застосовують пісок фракції 0,4…1,6 мм.

Розрахунок маси закріплювача (піску) доцільно здійснювати з урахуванням потрібної поверхні тріщини ГРП та питомого розподілу його на одиницю поверхні. Відомо, що прийнятні значення провідності тріщини ГРП спостерігається при питомій концентрації закріплювача mпс=0,5 кг/м2, яка відповідає розрідженому моношару. Концентрації більші від mпс=2,4 кг/м2 відповідають багатошаровому розміщенню закріплювача. На практиці ГРП рекомендується застосовувати до mпс=5…20 кг/м2.

Оптимальну півдовжину вертикальної тріщини визначають за залежністю, одержаною з обробки даних


 L=143 k-0,27, (3.2.17)


де L – півдовжина (одного крила) двобічної вертикальної тріщини, м;

 k- проникність породи, фм2 (1фм2=10-3 мкм2).

Поверхня двох півдовжин тріщини


 Sтр = 2 Lh, (3.2.18)


де L – визначається за формулою (3.2.17); h – звичайно дорівнює товщині пласта, що підлягає ГРП, м.

Питомий розподіл закріплювача (кг/м2) в тріщині можна розрахувати за емпіричними залежностями


 mпс= 4+40 (m-0,09) для m <= 0,11, (3.2.19)


де m = 0,07¸0,20 – пористість породи, частки одиниці.

Масу закріплювача (піску) (т), потрібну для закріплення тріщин, розрахуємо так:


 Mпс = Sтрmпс/1000. (3.2.20)


Як випливає з рівнянь (3.2.19) і (3.2.20), у міцних породах малої пористості кількість закріплювача (піску), необхідна для закріплення тріщин, значно менша, ніж у м’яких породах з великою пористістю.

Об’єм рідини для ГРП і концентація піску. Під час ГРП у свердловину послідовно нагнітають ньютонівську малов’язку рідину розриву пласта, буферну та рідину-пісконосій, що характеризується однаковими властивостями, які звичайно мають не тільки більшу в’язкість, але й часто неньютонівські властивості. Наприкінці запомповують малов’язку протискуючу рідину.

Об’єм малов’язкої рідини розриву звичайно Vр.р=20…30 м3.

Об’єм буферної рідини, яка знаходиться перед рідиною-пісконосієм, повинен забезпечити розкриття тріщин на ширину в 3…5 разів більшу, ніж діаметр закріплювача, а це 3…5 мм.

Наближено об’єм буферної рідини можна визначити так:


 Vб.р.=(0,1…0,3) Vр.п., (3.2.21)


Об’єм рідини пісконосія


 Vр.п.=103Мпс /Кпс, (3.2.22)


де Кпс – концентація піску в рідині-пісконосію, кг/м3.

Оптимальна концентрація піску в рідині-пісконосію залежить від швидкості падіння зернинок закріплювача u.

Залежність швидкості падіння піщинок діаметром 0,8 мм від в’язкості рідини за даними запишемо у вигляді


 u= 638m-0,73, (3.2.23)


де u – швидкість падіння, м/год; m - в’язкість мПа . с.

Концентацію піску (кг/м3) визначають за формулою

 Кпс =4000/u (3.2.24)


Об’єм протискуючої рідини (м3)


 Vп.р.=0,785 (Hтd2в.т+(H-Hт)D2в.к), (3.2.25)


де Hт – глибина спуску НКТ з пакером, м; H – глибина залягання пласта, що підлягає ГРП, м; dв.т і Dв.к – внутрішні діаметри НКТ і експлуатаційної колони, м.


 (3.2.26)

 
Розміри тріщини ГРП. Залежність для розрахунку півдовжини одного

крила вертикальної двосторонньої тріщини рідиною, яка фільтрується, має такий вигляд



де L – півдовжина тріщини, см; Vр.п - об’єм рідини-пісконосія, см3; qm – витрата рідини під час закріплення тріщин (qР4 , qm), см3/с; m - в’язкість рідини мПа . с; h- товщина пласта, см; m- пористість породи, частка одиниці; k- проникність породи, см2.


 рб=( DРс+DР0)/2 (3.2.27)


де рб – бічний гірничий тиск, Па; DРс =Рpm-Pпл. і DР0 =Р0 -Pпл .

 (3.2.28)

 
Бічний гірничий тиск оцінюють також за формулою



 

де рб – теоретичний бічний гірничий тиск, МПа; n- коефіцієнт Пуассона, звичайно n=0,25; H- глибина пласта в свердловині, м; rп – густина породи, кг/м3; g=9,8 м/с2.

Вважають, що утворення тріщини можливе, якщо перепад між тиском у свердловині та пластовим тиском був більшим, ніж бічний гірничий тиск DРс> рб.

Якщо в’язкість рідини-пісконосія близька до в’язкості пластової рідини, то для одержання прийнятних розмірів тріщини у чисельник формули (3.2.26) вводимо коефіцієнт умовного збільшення в’язкості, прийнявши


m = 4m. (3.2.29)



Ширину тріщини розраховують за формулою





де n– коефіцієнт Пуасона для гірських порід (n=0,25); w - ширина тріщини, см; Е – модуль Юнга для гірських порід (Е »104 Мпа).


Кількість насосних агрегатів для ГРП визначають, виходячи з відомих Рр.г, qm, характеристики одного агрегата Ра1, qа1 і технічного стану агрегатів Ка1» 0,5…0,9:





Тривалість проведення ГРП наближено оцінюють за такою залежністю:

 t=1440(Vp.p+Vб.р.+Vр.п+Vпр)/qm (3.2.32)


 (3.2.33)

 
Технологічну ефективність ГРП з вертикальною тріщиною у вигляді кратності росту дебіту після ГРП оцінюють за І.В.Кривоносовим з умови припливу до свердловини з радіусом горизонтальної тріщини, еквівалентним частині її півдовжини L, Rтр=0,25L:



де Qгр і Q0 – відповідно дебіти після і до ГРП; Rк – радіус контура живлення, rс- радіус свердловини.

Якщо свердловина має забруднену привибійну зону, приймаємо за rс приведений радіус свердловини rс = rпр.


3.3 Розрахунок ГРП


Таблиця 3.3.1. Вихідні дані для розрахунку ГРП

Параметр
Значення

Діаметр експлуатаційної колони, мм

168

Товщина стінки, мм

9

Тиск обпресування, Мпа

18

Верхні і нижні отвори перфорації, м

Нв.п

Нн.п


1840

1900

Товщина пласта, що підлягає ГРП,м

14

Пластовий тиск, Мпа

25,1

Пластова температура, 0С

77

Пористість порід,%

16

Середня проникність,мкм2

0,003

Поточна обводненість,%

0

Характеристика НКТ

Марка

Зовнішній діаметр,мм

Товщина стінки,мм

Глибина спуску,м

Е

89

6,5

1870

Тип насосного агрегата

УН1-630х700А(4АН-700)

Максимальний робочий тиск,МПа

70

Приймальність агрегата, при Р=70 МПа, м3/добу

552,96

Приймальність агрегата, при Ро=20 МПа, м3/добу

250

Дебіт свердловини, тис. м3/добу

20


При ГРП застосовують такі рідини: рідина розриву та протискуюча рідина – водний розчин 0,2% неонолу густиною rр.р.=1000 кг/м3; буферна рідина і пісконосій – водний 0,4% розчин ПАА в’язкістю mр.п.=40 мПа с, густиною rр.п.=1000 кг/м3.

I.Розрахуєм тиск та витрату рідини під час ГРП.

1.                


Визначимо середню глибину інтервалу перфорації:



2.                


Розрахуємо тиск на вибої Ро під час випробування свердловини на приймальність з тиском на гирлі Рог. Оскільки для цього застосовують малов’язку рідину з невеликою витратою qo=250 м3/добу то гідравлічні витрати незначні приблизно в 89 мм НКТ.



Отже витрати приблизно дорівнюють 0,006+0,00023=0,01 Мпа/100м.

Отже тиск на вибої:


3.Знайдемо початковий коефіцієнт приймальності свердловини для відомих значень qо і Ро.



4. Розрахуємо очікуваний тиск на вибої під час ГРП при чотирикратному рості приймальності за формулою (3.2.7). Для цього спочатку розрахуємо tgb за формулою (3.2.8) значення




Очікуваний максимальний тиск під час ГРП

Ррм =1,06 . Рр4 = 1,06 . 47,034 = 49,86 МПа



5. Визначимо очікувану максимальну витрату рідини для ГРП за формулою (3.2.15), прийнявши Аq=6,7 для рідини в’язкістю mр.п = 40 мПа . с



6.Розрахуємо тиск на гирлі свердловини (на насосних агрегатах) під час нагнітання в пласт рідини розриву за рівнянням (3.2.16)

Рр.г. = Рр.m + Ргс.т. + Рвтр.



7.Гідравлічні втрати складаються з втрат у 89 міліметрових трубах і втрат у 168 міліметровій колоні. Розрахуємо їх для турболентного режиму в трубах



і в обсадній колоні:


Отже гідравлічні витрати:


Рвтр.=Рвтр.т.+Рвтр.к=8,92+0 = 8,92 Мпа


Таким чином, за формулою (3.2.16)

Рр.р.г = 49,86 – 18,34 + 8,92 = 40,44 МПа


9. Визначимо тиск під час нагнітання в пласт буферної рідини. Для цього спочатку розрахуємо гідравлічні втрати в НКТ і в колоні за такими ж формулами, що й під час нагнітання рідини розриву. Аналізуючи розрахунки п.7 бачимо, що гідровитрати під час нагнітання в’язкої рідини з mб.р = 40 мПа× с і rб.р = 1000 кг/м3 будуть більші ніж при нагнітанні води:

(mб.р)0,25 = 400,25 =2,515.


Отже, витрати в НКТ будуть збільшені в 2,515 разів, а саме:


Рвтр.т = 0,477 . 18,7 . 2,515 = 22,43 МПа;

 Рвтр.к = 0 . 2,515 = 0 МПа;

 Рвтр = 22,43 +0=22,43 МПа.


Очікуваний тиск на гирлі під час нагнітання буферної рідини


Рб.р.г = 49,86 – 18,34 + 22,43 = 53,95 МПа.


10. Тиск під час нагнітання рідини-пісконосія визначаємо з урахуванням впливу піску на гідравлічні витрати.

Для цього вирахуємо густину та умовну в’язкість суміші рідини з піском.

Густина суміші



де Спс =90 кг/м3 – концентрація піску в рідині;

 rб.р. – густина буферної рідини і рідини пісконосія, кг/м3.


Отже,



Умовна в’язкість суміші

mсм.= m б.р е (3,18 . 0,034) = 40 е (3,18 . 0,034)=44,6 мПа . с.


Визначимо множник збільшення гідровитрат


(mсм)0,25 = (44,6)0,25=2,584.


Отже, втрати тиску в трубах і колоні

Рвтр.=0,477. 18,7 . 2,584 + 0 . 2,584=23,05 МПа.

Очікуваний тиск на агрегатах під час закріплення тріщин піском:

Рр.н.г = 49,86 – 18,34 + 23,05 = 54,57 МПа.

Таким чином, порівнюючи максимальні очікувані тиски на всіх етапах ГРП, бачимо, що вони менші від практично можливих для застосовуваних насосних агрегатів УН1-630х70А (4АН-700) тисків на 60 МПа. Тому ГРП у свердловині наявними технічними засобами – можливий.

II. Розрахуєм об’єм рідини для ГРП і масу закріплювача тріщин (піску).

1.Визначимо потрібну півдовжину вертикальної тріщини, яка має забезпечити оптимальний приріст дебіту за формулою (3.2.17)

L=143 k-0,27 = 143 . 3-0,27 = 106 м.

2.Поверхня фільтрації двох півдовжин тріщини за (3.2.18)

Sтр = 2 Lh=2 .106 .14 = 2968 м2.

3.Потрібний питомий розподіл закріплювача в тріщині за (3.2.19)

mпс= 10+100 (0,16-0,11)=15 кг/м3 .

4.Маса піску, необхідна для закріплення тріщини, згідно з (3.2.20)

Mпс = 2968 . 15/1000 = 44,52 т.

5.Об’єм рідини розриву розраховуємо відповідно до потреби дослідження на приймальність зі зростаючою витратою рідини і початковим розкриттям тріщин. Звичайно Vр.р = 20…30 м3 малов’язкої рідини.

6. Об’єм рідини-пісконосія визначаємо, виходячи з потрібної маси піску і допустимої його концентрації.

За рівнянням (3.2.23) і (3.2.24) рекомендована концентрація піску

Кпс =4000/638m-0,73= 6,27 mр.н.-0,73

Для mр.н = mб.р.= 40 мПа . с знайдемо

Кпс =6,27 .14,77=92,6 кг/м3

Приймемо допустиму концентрацію піску Кпс =90 кг/м3.

Об’єм рідини-пісконосія визначаємо за залежністю (3.2.22)

Vр.п.=103.44,52 /92,6=480,78 м3

7. Об’єм буферної рідини знаходимо за умовою

Vб.р.=0,3 Vр.п.=0,3. 480,78 = 144,23 м3

8. Об’єм протискуючої рідини розрахуємо за формулою (3.2.25)

Vп.р.=0,785 (1870 . 0,0762+(1840-1870)0,1682)=0,785 . 9,95=7,814м3

Таким чином, під час ГРП у свердловину буде запомповано послідовно рідини розриву – 30м3, буферної рідини – 144,23 м3 , рідини-пісконосія 480,78 м3, протискуючої рідини – 7,814 м3, піску – 44,52 т.

Страницы: 1, 2, 3, 4, 5