рефераты

рефераты

 
 
рефераты рефераты

Меню

Рекомендации по утилизации шахтного метана для угольных шахт Кузбасса рефераты

Эжектор. Устройство, в котором происходит обмен энергиями между активным потоком (рабочим, эжектирующим) и пассивным потоком (эжектируемый) посредством их контакта с образованием в результате смешанного потока, имеющего энергию меньшую, чем активный и большую, чем пассивный. В качестве потока может быть использован газовый, жидкостной и газожидкостной потоки. Распределение давлений эжектирующего, эжектируемого и смешанного потоков по длине эжектора будет выглядеть следующим образом, где Рр - давление активной среды, Рн - давление пассивной среды и Рс - давление смешанной среды.

Эжектирующий поток перед контактом с эжектируемым потоком разгоняется в сопле. Далее в виде струи он поступает в приемную камеру, куда подается также эжектируемый поток. В результате наличия вязкостного трения на границе рабочей струи образуется струйный турбулентный пограничный слой (результат захвата - эжекции пассивного потока). Через этот слой происходит обмен энергиями между активным и пассивным потоками. Струя рабочей среды окружена струйным турбулентным пограничным слоем, нарастающим вниз по течению и сопровождающим ее, а также не захваченный еще пограничным слоем поток пассивной среды из приемной камеры поступают в камеру смешения. В камере смешения продолжается интенсивный обмен энергиями между активным и пассивным потоками, выравнивание профиля скоростей с некоторым повышением статического давления потока по течению. При этом активный поток замедляется, а пассивный разгоняется. Смешанный поток из камеры смешения вытекает в диффузор, где происходит его торможение, сопровождающееся дальнейшим возрастанием статического давления до величины, определяемой сопротивлением оборудования, в которое нагнетается смешанная среда.

При изменяющемся массовом расходе пассивной среды (Gн) и неизменных параметрах рабочей (Рр, tр) работа эжектора характеризуется зависимостями Рс = f(U) и Рн=f(U), приведенными на рисунке, которые называют характеристиками. Рс - давление смешанной (сжатой) среды, которое может обеспечить эжектор, Рн - давление эжектируемой среды на входе в эжектор, U - массовый коэффициент эжекции, равный отношению расходов эжектируемой и рабочей сред: Gн/Gр.

Характеристики состоят из двух зон, то есть соответствуют двум режимам работы аппарата: допредельному и предельному. Характеристика вида Рс=f(U) имеет пологую и вертикальную ветви. Точки характеристики, лежащие на пологой ветви отвечают допредельным режимам, то есть таким, в которых подача эжектора зависит от его противодавления. Точки характеристики на вертикальной ветви отвечают предельным режимам работы эжектора, то есть таким, в которых его подача не зависит от его противодавления. Предельные режимы работы определяются достижением эжектируемым или смешанным потоками критической скорости в каком-либо сечении проточной части аппарата.


Рисунок 3.4 - График режима эжектора


Предельные режимы работы эжектора возникают в случае, если фактическое противодавление (Pc)ф=f(U) не превышает предельное (Рс)пр=f(U). Рабочими режимами работы эжектора в многоступенчатых пароэжекторных вакуумных насосах являются предельные. Расчетный режим эжектора при его проектировании определяется точками пересечения предельной и фактической характеристик (точки А и Б).

Энергетическая эффективность струйного аппарата характеризуется коэффициентом эжекции (U): отношением расхода пассивной среды, который эжектируется единицей расхода рабочей среды, то есть: U=Gн/Gр. Чем больше U при выбранных параметрах потоков, тем эффективней аппарат.

В паровом или газовом эжекторе может быть достигнута степень повышения давления пассивного (Рс/Рн) потока равная = 20. При таких высоких значениях степеней повышения давления коэффициенты эжекции очень малы, соответственно и расходы рабочего пара для таких условий слишком велики. Поэтому обычно при конструировании одиночного эжектора его степени повышения давления пассивной среды ограничивают величинами от 3 до 6. При таких степенях повышения давления коэффициенты эжекции обычно равны значениям в диапазоне: 0.6-0.2, соответственно, расходы рабочего пара для сжатия единицы массы эжектируемой среды составляют 1.7-5.

Часто "степень повышения давления" эжектируемой среды в струйном аппарате (Рвх/Рвых) ошибочно называют "степенью сжатия", которая равна отношению удельных объемов (Vвх/Vвых). Равенство отношений давлений и объемов может иметь место только при изотермическом процессе в аппарате. В действительности реальный процесс в эжекторе происходит с повышением температуры, то есть является политропным, поэтому степень повышения давления в эжекторе не равна степени сжатия.

Сепаратор. Подбирается по модификации, в зависимости от производительности и необходимого давления.

Насос. Необходимы параметры насоса по давлению и производительности, а также по используемой жидкости и ее плотности.

Иное вспомогательное оборудование. Дроселирование газового потока. После сепаратора газ выйдет на точке насыщения. Если произвести компремирование газа до 10атм, то растворенная влага в газе составит 1350мг/кг, при сбросе давления до 6атм. количество растворенной влаги будет соответствовать точке росы на 7 градусов меньше.

Эжектор нашел свое применение и в нефтяной промышленности. Для утилизации низконапорных нефтяных газов можно использовать насосно-эжекторные установки, важной частью которых является жидкостно-газовый эжектор (ЖГЭ). Принцип работы заключается в следующем: насос откачивает рабочую жидкость из сепаратора и подает ее на эжектор, который откачивает и компремирует газ. Газ может отбираться из установки комплексной обработки нефти, концевых ступеней сепарации, блока очистки сточных вод, сырьевых резервуаров. Образовавшаяся газожидкостная смесь из эжектора направляется в сепаратор, где происходит отделение газа от рабочей жидкости. Отсепарированный газ из сепаратора под давлением достаточным для подачи потребителю, поступает в систему газосбора. Рабочая жидкость вновь откачивается насосом из сепаратора и подается к эжектору. Таким образом, рабочая жидкость непрерывно циркулирует по контуру «сепаратор – насос – эжектор – сепаратор», осуществляя при этом откачку, компремирование и транспорт газа. В качестве рабочей жидкости могут применяться техническая вода, различные водные растворы, нефть.

Использование эжекторного компремирования обладает следующими преимуществами перед компрессорными станциями:

- высокая эксплуатационная надежность;

- отсутствие движущихся частей;

- незначительные капитальные затраты и численность обслуживающего персонала.

Кроме того, в сепараторе эжекторного типа дополнительно утилизируется газовый конденсат, который на обычном компрессоре безвозвратно теряется.

Рисунок 3.5 - Схема эжектора


Малогабаритные центробежно-вихревые сепараторы СЦВ-7/159, СЦВ-7/219, СЦВ-7/250

Характеристики:

Высокая степень сепарации (99,99%) при любом давлении и производительности.

Отсутствие сменных фильтрующих элементов.

Рабочая среда – воздух, газ, газожидкостная смесь.

Содержание жидкости на выходе, г/м3 - 0.

Содержание взвешенных частиц на выходе – соответствует «воздух Кл.1» ГОСТ 17433-80

Потеря напора, МПа (мм. вод.ст.) – не выше 0,003 (300).

Не требует освидетельствования в органах Госгортехнадзора (Постановление от 11.06.03 г. № 91 Госгортехнадзора РФ).

Малые размеры и вес (до 50 кг).

Устойчивая работа в пробковом режиме;

Способ удаления взвеси - через сливной вентиль или самотеком

Гарантийный срок эксплуатации - 10 лет

Под заказ СЦВ могут исполняться на любое давление и производительность, в нержавеющей стали, а также комплектоваться автоматикой или механикой слива.

Преимущества:

• очистка как воздушного (газового), так и газожидкостного потоков, способен осуществлять разгазирование жидких фаз;

• высокая эффективность очистки - «воздух Кл.1 ГОСТ 17433-80»;

• степень сепарации – 99,99% при любом давлении и производительности;

• отсутствие сменных фильтрующих элементов;

• широкий диапазон нагрузок;

• устойчивая работа в пробковом режиме;

• низкая металлоемкость;

• малые размеры и вес;

• гарантийный срок эксплуатации составляет 10 лет.

Базовые сепараторы не подлежат освидетельствованию в органах Госгортехнадзора.

По желанию заказчика сепаратор может быть изготовлен:

• на любое давление и производительность;

• с различными присоединительными фланцами;

• из нержавеющей стали.

Так, сепараторы СЦВ-7 используются в схеме утилизации шахтного газа – газа с различной концентрацией метана, который образуется в угольных пластах и концентрируется в стволах шахт при добыче угля, а также, выделяется законсервированными угольными шахтами. Выброс метана в атмосферу оказывает губительное влияние на окружающую среду и является одной из причин возникновения явления глобального потепления на планете (его воздействие на окружающую среду в 21 раз выше чем у СО2). В настоящее время внедряется масштабная программа по конверсии шахтного газа, проводимой Донецкой шахтой им. А.Ф. Засядько, которая стала одной из первых в Украине по дегазации горных массивов и последующей безвредной утилизации спутника угля – метана. Шахтный газ будет служить источником энергии для 22-х когенерационных систем с суммарной тепловой и электрической мощностью 131 МВт. Вырабатываемое тепло и электроэнергию предполагается использовать для нужд производственных комплексов шахты и жилых массивов Донецка. Данный проект стал возможным благодаря оборудованию, установленному:

- на обводной ветви вентиляционного ствола в разрыв существующего дегазационного трубопровода для очистки природного шахтного газа от влаги и угольной пыли, с целью обеспечения бесперебойной дегазации шахты;

- на поверхности перед вакуумно-насосной станцией, с целью снижения концентрации угольной пыли в газовой смеси для увеличения срока службы вакуумных насосов.

Одной из перспективных программ использования сепараторов СЦВ-7, является их применение в нефтегазовой отрасли. При разработке новых нефтегазовых месторождений выделяемый попутный нефтяной газ (ПНГ), как правило, утилизируется путем сжигания из-за отсутствия оборудования, способного качественно отделить имеющийся в газе газоконденсат, что наносит значительный вред экологии. Очищенный газ может быть использован как продукт для реализации или в качестве топлива для газо-поршневых или газотурбинных электростанций, в целях его дальнейшей генерации в электроэнергию.

Сепараторы СЦВ-7 применяются практически на всех предприятиях, использующих компремируемый воздух, для его очистки от капельной, мелкодисперсной, аэрозольной влаги и механических примесей. После компрессоров сжатый воздух, как правило, содержит капли воды, и мельчайшие частицы пыли, которые свободно проходят через фильтры. Под воздействием этой смеси выходит из строя оборудование. Влага приводит к износу и коррозии пневматического оборудования, при этом понижается и качество продукции, появляется брак, возникают дополнительные расходы на запчасти и ремонт, вплоть до остановки производственного процесса. Проведенные компанией маркетинговые исследования показывают, что востребованность данного оборудования является очень высокой. Только по приоритетному направлению, – топливно-энергетическому комплексу, – для производимого компанией оборудования открывается обширный рынок сбыта. В первую очередь это связано с вводом в эксплуатацию новых скважин, которые должны комплектоваться, в соответствии с современными требованиями, оборудованием, позволяющим проводить качественную первичную подготовку газового углеводородного сырья, и, в особенной степени, попутного нефтяного газа, для целей его промышленной утилизации. Исследования показывают, что нефтяными компаниями в год вводится в эксплуатацию более 4000 скважин. По газодобывающим компаниям ситуация аналогична. ОАО «Газпром», имея порядка 10000 скважин, в год вводит в эксплуатацию около 200 новых. С учетом доли «Газпрома» (90%) в общем объеме добычи, можно сделать вывод, что газодобывающие компании вводят более 3600 скважин в год. По экспертным оценкам вновь вводимые объекты комплектуются на 55-70% оборудованием, созданным по новым технологиям.


3.2 Программа внедрения сепаратора для очистки попутного газа


Предлагаю перспективную программу, направленную на предотвращение нанесения ущерба окружающей среды и использование дополнительных энергетических ресурсов.

В последнее время, проблемы связанные с экологией приобрели чрезвычайно острый характер. При этом, одними из самых животрепещущих являются вопросы, связанные с вредными выбросами в атмосферу твердых и жидких частиц, которые имеют место во многих видах производств и технологий. Очистные сооружения большинства промышленных предприятий уже не соответствуют международным стандартам по допустимым промышленным выбросам.

На территории Краснодарского края данная проблема особенно остро стоит перед нефтедобывающими предприятиями, которые путем сжигания утилизируют добываемый попутный газ. В результате окружающая среда и население подвергаются воздействию экологически вредных продуктов сгорания попутного нефтяного газа, в том числе и канцерогенных, что приводит к существенному повышению заболеваемости населения в регионе нефтедобычи. За год, в целом по России в результате сжигания попутного нефтяного газа в атмосферу выбрасывается 400 тыс. тонн вредных веществ – окиси углерода, окислов азота, углеводородов, сажи. В то же самое время платежи за загрязнение окружающей среды от выбросов попутного газа не превышают 0,8-1,2% от стоимости реализуемой нефти и только мизерная доля этих средств остается в распоряжении Администрации края и как-то покрывает ущерб, наносимый экологии региона.

При разработке новых месторождений и бурении скважин добываемый попутный газ утилизируется путем сжигания. Основной причиной такой утилизации попутного газа является экономическая нецелесообразность его использования, а именно:

- добываемый попутный газ имеет значительные примеси в виде влаги, газоконденсата и нефти, в связи, с чем газ без дополнительной промышленной переработки неприемлем для использования;

- разрабатываемые скважины не привязаны к коммуникационным сетям в связи, с чем транспортировка газа потребует капитальных вложений, окупаемость которых без детального анализа скважины сомнительна.

Предлагаемое нами оборудование с высокой степенью эффективности очистит газовый поток от нефти, газоконденсата, влаги и механических примесей, таким образом, добываемый попутный газ может быть использован без дополнительной промышленной переработки, а выделенный газоконденсат и нефть использованы по назначению.

Очищенный газ может быть использован для реализации или в качестве топлива для газо-поршневых или газотурбинных электростанций.

Были проведены соответствующие испытания, которые подтвердили возможность работы следующей схемы: попутный газ – сепаратор – газо-поршневая электростанция – электроэнергия. Сегодня на территории Краснодарского края в Славянском районе (НГДП 6 ОАО «Роснефть-Краснодарнефтегаз») ежедневно утилизируется путем сжигания порядка 1,5 млн.м3/сутки, а для выработки 1 кВт электроэнергии необходимо 0,5 м3 газа при использовании газо-поршневой электростанции (АРЗ «Синтур-НТ»), а при использовании более мощных двигателей или турбин необходимое количество газа еще меньше.

Проблема, что делать с газом, фракция которого почти всегда есть в нефтяных месторождениях, не считая попутного нефтяного газа, который растворен в нефти и выделяется при ее первичной обработке на скважинах, существует давно. Газ сжигают на месторождениях, иногда закачивают обратно в пласт для поддержания давления. Нами предлагается вариант использования попутного газа для выработки электроэнергии.

Исследования рынка показали, что сегодня такие нефтяные компании, как Лукойл, ЮКОС и Сургутнефтегаз объявили о своих планах производства природного газа. Руководители Лукойла даже говорят о своей цели производить 100 млрд. кубометров в год, в пересчете на нефтяной эквивалент – это примерно столько же, сколько нефти сегодня добывает этот крупнейший в стране ее производитель (хотя это в 5 раз меньше, чем добыча Газпрома сегодня). Понятно, что эти компании не стремятся получить убыточный сегмент к своему портфелю активов. Очевидно, что в будущем цены на внутреннем рынке повысятся до разумного уровня, и, конечно, эти компании хотят попасть в экспортную квоту Газпрома.

По ценам внутреннего рынка, которые сегодня установлены на весьма низком уровне, производство газа для поставки на внутренний рынок – убыточно. В этом году Газпром ожидает, что внутренний рынок принесет ему 15 млрд. руб. убытков. Повышение тарифов планируется на много лет вперед, оно будет постепенным, и цены явно не достигнут точки окупаемости в ближайшие годы. Газпром покрывает убытки за счет прибыли от экспорта газа, при этом общая добыча газа Газпрома сокращается на 1,5-2% в год. Тем не менее, Газпром заявляет о предстоящем увеличении поставок газа на экспорт в страны ЕС. Этим лишний раз подчеркивается отношение газовой монополии к убыточному внутреннему рынку – повышение экспорта возможно только за счет сокращения поставок на внутренний рынок.

В секторе электроэнергетики, в отличие от нефтяного и газового, уже существует рынок, на котором представлено большое число более-менее независимых производителей, есть ФОРЭМ, есть возможность заключать прямые договоры о поставках электроэнергии крупным ее потребителям. Есть и возможность экспортировать электроэнергию. Конечно, построить ЛЭП – это немалые капиталовложения, но все же значительно меньше, чем при строительстве магистрального газопровода. Отсюда – интерес нефтяных компаний к генерации электроэнергии. В Томске, например, где ЮКОС сотрудничает с РАО ЕЭС и местной энергетической компанией, у него немалые запасы природного газа. Отсюда интерес к крупным пакетам акций в региональных энергетических компаниях.

Таким образом, можно сказать, что нами выверен как технический путь решения проблемы попутного газа, так и экономический, так как в целом по России аналогичные намерения имеют крупные нефтедобывающие компании, что говорит о правильности выбранного пути.


4.Технологии разделения газов


4.1 Адсорбционная технология


В основе процесса адсорбционного разделения газовых сред лежит явление связывания твердым веществом, называемым адсорбентом, отдельных компонентов газовой смеси. Это явление обусловлено силами взаимодействия молекул газа и адсорбента. Работа адсорбционных газоразделительных систем основана на том, что поглощение компонента газовой смеси сильно зависит от температуры и парциального давления. Таким образом, регулирование процесса поглощения газов и регенерации адсорбента происходит путем изменения давления и/или температуры.

Страницы: 1, 2, 3, 4, 5, 6