рефераты

рефераты

 
 
рефераты рефераты

Меню

Определение удельного электрического сопротивления горных пород методом бокового каротажа рефераты

Бобриковский горизонт (C1bb) кожимского надгоризонта (C1kzh) нижнего подъяруса (С1vl) визейского яруса (C1v) представлен терригенными отложениями песчаника, алевролита с прослоями углистого материала. По литологическому составу толща расчленяется на две пачки: нижнюю пачку – аргиллито-глинистую и верхнюю – песчано – алевролито – глинистую. Мощность – 10 – 16 метров.

Подошве тульского горизонта (C1tl) окского надгоризонта (C1ok) верхнего подъяруса (C1v2) наблюдаются прослои мергелей, аргиллитов. Выше залегают темно –серые известняки. Прослоями сильно глинистые, алевритовые.

Мощность горизонта – 20 – 40 метров.

Алексинский (C1al), Михайловский (C1mh) и веневский (C1vn) горизонты представлены темно–серыми доломитами. В кровле залегают известняки.

Прослоями они органогенные и доломитизированные. Мощность отложений – 110-125 метров.

Серпуховский ярус (С1s) представлен доломитами светло – серыми и белыми, серыми, пористо – кавернозными, прослоями плотные, редко участками глинистые, с включениями ангидрита голубовато – серого, кристаллические, участками органогенные, частично доломитизированные, глинистые. Мощность – 130 – 135 метров.

Башкирский ярус (С2b) среднекаменноугольного отдела СII представлен известняками органогенными со стиллалитовыми швами. Мощность отложений яруса – 15 – 25 метров.

В подошве верейского горизонта (С2vr) нижнего подъяруса (С2ml) московского яруса (C2m) залегают темно – серые мергели. Выше идет чередование алевролитов и аргиллитов с маломощными прослоями мелкозернистых песчаников. Известняки органогенные, прослоями оолитовые. Мощность – 45 – 55 метров.

Каширский горизонт (С2ks) сложен серыми доломитами, слабо глинистыми, известняками доломитизированными, редко органогенными. Мощность – 55 – 68 метров.

Подольский горизонт (С2pd) верхнего подъяруса (С2m2) представлен доломитами с включениями гипса и ангидрита. В кровле залегают известняки светло – серые и органогенные. Мощность горизонта – 50 – 64 метров.

Мячковский горизонт (С2mc) сложен известняками и доломитами, слегка глинистыми. Существует прослой зеленовато – серой глины. Мощность горизонта 100 – 125 метров.

Касимовский ярус (С3k) и гжельский ярус (С3g) верхнекаменноугольного отдела представлен доломитами и сильно доломитизированными известняками с включением гипса и ангидрита. Мощность – 150 – 170 метров.

Сакмарский ярус (P1s) и ассельский ярус (P1a) нижнепермского отдела пермской системы представлены светлыми и светло – серыми известняками, кристаллическими и органогенно – обломочными серыми доломитами, а также доломитами реликтово – органогенно – обломочными. Мощность – 150 – 170 метров.

Артинский ярус (P1ar) представлен известняками и серыми доломитами.

В верхней части этот ярус представлен ангидритом. Мощность – 8 – 25 метров.

Кунгурский ярус (P1k) в нижней части представлен доломитами глинистыми. Выше ангидрит голубовато – серый с включениями и прослоями серых доломитов и темно – серых глин. В кровле яруса залегают гипсы, известняки и доломиты с прослоями глин, песчаников, а участками брекчий. Мощность – 80 – 140 метров.

Уфимский ярус (P2u) верхнепермского отдела РII представлен чередованием песков и буровато – красных глин. Мощность отложений от 90 до 100 метров.

Спириферовый подъярус (P2kz1) и конхиферовый подъярус (P2kz2) казанского яруса (P2kz) представлены светло – серыми и зеленовато – серыми песчаниками, крепкими и известковыми. Глины – зеленовато – серые. Мощность – 25 – 30 метров.

Четвертичная система Q. Эти отложения развиты по долинам рек и у подножья склонов. Литологически эти отложения представлены песками, суглинками и глинами, редко галечников. Мощность – 8 – 10 метров.


1.4 ТЕКТОНИКА


Туймазинское нефтяное месторождение приурочено к Туймазинской и Александровской складкам, образующим с Бавлинским поднятием Туймазинский вал северо-восточного простирания. Туймазинский вал осложняет юго-восточную часть южной вершины Татарского свода.

Сопоставление структурных карт по отдельным стратиграфическим горизонтам показывает, что структурный план площади в целом сохраняется от девонских отложений до пермских.

Амплитуда поднятия по различным горизонтам также мало отличается. Наблюдается лишь некоторое усиление структуры с глубиной. В пределах замкнутых изогипс амплитуда поднятия в карбоне колеблется от 45 до 50 м, а по кровле репера "Верхний известняк" составляет 60 м.

Туймазинская структура вырисовывается в виде обширной (36 км х 20 км) асимметричной брахиантиклинальной складки северо-восточного простирания, оконтуривающейся стратоизогипсой - 1480м. Северо-западное крыло ее пологое - угол падения порядка 0-12', 0-14'. В присводовой части и на переклиналях углы падения увеличиваются от 0-17' до 0-20'.

Юго-восточное крыло складки осложнено резким изгибом слоев в районе первого ряда эксплуатационных скважин. Углы падения здесь достигают - 4-30'. В юго-западном направлении наблюдается выполаживание этого резкого склона. В районе седловины, отделяющей Туймазинское поднятие от Александровского, углы падения не превышают 2-10', а на юго-восточном крыле Александровского поднятия - 1-25'.

К юго-востоку одноименное крутое крыло переходит в обширную террасу. Эта терраса протягивается вдоль всего Туймазинского поднятия и на юго-западе в районе Александровской площади переходит в неглубокий прогиб. Последний отделяет Александровское поднятие от Южно-Александровского поднятия. С юго-востока терраса окаймляется крутым склоном прогиба, отделяющего Туймазинскую структуру от структур Серафимовско - Балтаевского вала.

Северо-западное крыло Туймазинского поднятия и указанная терраса осложнены целым рядом небольших куполовидных вздутий и понижений типа седловин, ориентированных преимущественно в широтном и северо-восточном направлениях. Сводовая часть собственно Туймазинского поднятия окон оконтуривается изогипсой - 1454м и осложнена большим количеством мелких пологих куполов. Александровская площадь на этих отметках представляется в виде двух небольших куполов с амплитудой не более 5-8 м, разделенных неглубокой седловиной.


1.5 НЕФТЕГАЗОНОСНОСТЬ И ВОДОНОСНОСТЬ


Признаки нефти выявлены в разрезе от девонских до пермских отложений включительно. Самым нижним нефтеносным горизонтом является песчаный пласт Д-IV, в котором обнаружена небольшая залежь нефти на Александровской площади. Следующим нефтеносным горизонтом выше по разрезу является песчаный пласт Д-III, в котором небольшие залежи обнаружены в наиболее повышенных участках структуры на Туймазинской площади.

Одним из основных нефтеносных горизонтов являются песчаники пласта Д-II, которые на Туймазинской площади содержат крупную залежь нефти (12*8 км).

Основной объект разработки Туймазинского месторождения приурочен к песчаникам, пласта Д-I пашийского горизонта, нефтенасыщенным на Туймазинском и Александровском площадях.

Нефтепроявления промышленного значения выявлены в карбонатных осадках фаменского яруса, в основном в отложениях верхне-фаменского подъяруса.

Промышленная нефть имеется в верхней части пористых известняков турнейского яруса. Нефть турнейского яруса удельного веса 0,894 г/см3, содержание серы - 3%.

К песчаникам бобриковского горизонта на Туймазинской и Александровской площадях приурочены залежи нефти, которые являются самостоятельными объектами разработки. Песчаники этого горизонта имеют линзовидное распространение. Нефть имеет удельный вес 0,885 г/см3, содержание серы до 3,81%.

Признаки нефти обнаружены в верхней части турнейских тонкопористых и кавернозных известняков, в артинских отложениях тонкозернистых и кавернозных известняков, местами содержится газ. Залежи газа имеют локальный характер, отличаются небольшим дебитом и весьма ограниченными запасами.

В основании кунгурского яруса залегают оолитовые известняки, насыщенные жидкой газированной нефтью. Однако, получить промышленный приток нефти из этих известняков не удалось.

Следует отметить, что нефтеносность карбонатных отложений, мощность которых составляет почти 80% разреза осадочной толщи палеозоя, изучена слабо.

В настоящее время эксплуатируются пласты Д-I, Д-II, Д-III, Д-IV, песчаники бобриковского горизонта, известняки верхне-фаменского подъяруса и турнейского яруса.

Водоносные горизонты в девонских отложениях приурочены к живетскому, франскому, фаменскому ярусам.

Воды всех девонских пластов от Д-V до Д-I характеризуются одним и тем же составом. Воды хлоркальциевые сильно минерализованные, практически бессульфатные. Характерной особенностью девонских вод является значительное содержание в них окисного железа и повышенное содержание брома.

Общая минерализация пластовых вод девона достигает 815 мг/экв/100г. Удельный вес колеблется в пределах 1,187 - 1,19 г/см3. По классификации Пальмера состав вод выражается:

первая соленость - 62-65%

вторая соленость - 35-38%

вторая щелочность - 0,01-0,09%экв.

Среди анионов преобладает содержание ионов хлора 407 мг/экв/100г. Из катионов значительно содержание 259 мг/экв/100г.

Воды фаменского яруса представляют собой также высокоминерализованные рассолы. Характерной особенностью является повышенное содержание иона. Установлено содержание сероводорода.

Воды турнейских, бобриковских, тульских отложений нижнего карбона характеризуются по сравнению с девонскими водами меньшей степенью метаморфизма. Они также высокоминерализованы и по солевому составу относятся к хлоркальциевому типу, а по преобладанию составляющих компонентов к хлорнатриевому. Обнаруживается наличие сероводорода.

В процессе проводки скважин отмечается наличие водоносных горизонтов в окском и сорпуховском подъярусов нижнего карбона. Для этих вод характерно резкое увеличение концентрации сульфатных ионов.

Воды артинских отложений всюду проявляют себя интенсивно.

В скважинах с низкими отметками рельефа наблюдается переливание воды через устье. Воды относятся к типу сульфатонатриевых.

Воды кунгурского яруса относятся также к типу сульфатонатриевых вод.

Водоносные горизонты встречаются также выше по разрезу в отложениях Уфимской свиты, Казанского и Татарского ярусов.


2. ТЕХНИЧЕСКАЯ ЧАСТЬ

2.1 ОБОСНОВАНИЕ МЕТОДА БК ДЛЯ РЕШЕНИЯ ПОСТАВЛЕННОЙ ЗАДАЧИ


Метод БК предназначен для изучения высокого сопротивления разрезов скважин, заполненных солёной промывочной жидкостью (рр=0,1 – 0,5 Ом*м). При проникновении в пласт жидкости высокой минерализации сопротивление прискважинной части пласта понижается, что практически не влияет на показания, зарегистрированное зондами БК. В случае проникновения фильтрата промывочной жидкости, повышающего сопротивление пласта, использование показаний для определения истинного удельного сопротивления пласта становится малоэффективным.

Весьма удовлетворительные результаты получают при исследовании зондами БК малопористых пород, например карбонатов, для которых отмечаются высокие значения pп/pр. В таких разрезах фокусированные зонды позволяют получить достаточную дифференцированную кривую pк, а кажущееся сопротивление линейно зависит от истинных значений рп в достаточно широком диапазоне их изменения. Это позволяет определять истинное удельное сопротивление пласта в таких разрезах более точно, чем, например, по данным БКЗ градиент-зондами.

Девятиэлектронные фокусированные зонды с повышенным радиусом исследования предназначены для изучения пластов с большой зоной проникновения фильтрата промывочной жидкости. С помощью девятиэлектродного псевдоэкранного зонда можно определять параметры зоны проникновения.

Данные метода БК позволяют более детально расчленить геологический разрез, установить его литологию, выделить пласты-коллекторы и уточнить их строение, определить параметры зоны проникновения фильтрата промывочной жидкости и истинное удельное сопротивление пластов.


2.2 ФИЗИЧЕСКИЕ ОСНОВЫ МЕТОДА БК


Боковой каротаж является разновидностью электрического каротажа по методу сопротивления. Он входит в группу модификаций электрического каротажа, в которых используются зонды с управляемым электрическим полем. Боковой каротаж называют еще каротажем зондами с фокусировкой тока.

Боковой каротаж проводят многоэлектродными (семь, девять электродов) и трехэлектродными зондами. Применяют многоэлектродные зонды с электродами небольшого размера (точечными) и с кольцевыми электродами, устанавливаемыми на изолированной трубе.

Трехэлектродный зонд бокового каротажа (см. рис. 1, а) представляет собой длинный цилиндрический электрод, разделенный изоляционными прослойками на три части: небольшой по длине центральный (основной) электрод А0 и два расположенных симметрично по отношению к нему и соединенных между собой накоротко экранных электрода A1 и А2. Через основной и экранные электроды пропускается ток одной полярности и обеспечивается равенство их потенциалов. Это может быть достигнуто одним из следующих способов.

1.                Сила тока через экранные электроды автоматически регулируется так, чтобы разность потенциалов основного и экранных электродов была равна нулю.

2.                Основной электрод накоротко соединяется с экранными электродами.







Рис. 1. Схемы зондов бокового каротажа: а — трехэлектродного (БК-3); б —семиэлектродного (БК-7); в — девятиэлектродного (псевдобокового) каротажа (БКМ)


Практически в последнем случае основной электрод соединяют с экранным через небольшой резистор r, который используется для измерения силы тока через основной электрод. Величина резистора r берется такой, чтобы вносимая в результате введения этого резистора погрешность не вызывала заметного искажения результатов.

Когда достигается равенство потенциалов, в результате влияния поля экранирующих электродов ток, выходящий из основного электрода, на значительном расстоянии распространяется слоем, перпендикулярным к оси скважины, с толщиной, приблизительно равной длине основного электрода. Вследствие этого влияние скважины и вмещающих пород сказывается на результатах измерений значительно меньше, чем при обычных зондах.


Рис. 2. Распределение токовых линий зондов БК в однородной среде:

а — трехэлектродного, б — семиэлектродного, в —- многоэлектродного, I0 — токовый слой центрального электрода A0

Для определения кажущегося удельного сопротивления необходимо знать потенциал основного электрода — разность потенциалов ∆Uкс между основным токовым, который является одновременно измерительным М, и удаленным на достаточно большое расстояние от зонда электродом N, находящегося в скважине. Фактически измеряют потенциал экранного электрода; результат получается тот же самый, так как потенциал экранных и основного электродов одинаков.









Рис. 3. Схемы измерения методом БК с применением трехэлектродного зонда с автокомпенсатором (а) и с шунтирующим сопротивлением R0 (б). I0, Iэ—токи, питающие соответственно центральный электрод А0 и экранные электроды A1 и A2; РУ — регулирующее устройство силы тока, протекающего через экранные электроды


Кажущееся удельное сопротивление для трехэлектродного зонда подсчитывается по формуле (1).


рк = KUкс/I0 (1)

где I0 — сила тока через основной электрод A0;

К — коэффициент зонда; он берется таким, чтобы в однородной среде кажущееся удельное сопротивление получалось равным удельному.

Если сила тока питания основного электрода I0 поддерживается постоянной, то, записывая изменение ∆Uкс, получают кривую сопротивления.

Характерными размерами трёхэлектродного зонда являются длина зонда L – расстояние между серединами интервалов, изолирующих центральный электрод от экранных электродов, общий размер зонда Lобщ – расстояние между внешними концами электродов А1 и А2, диаметр зонда dз. За точку записи кривой условно принимается середина центрального электрода А0.

Электроды трехэлектродного зонда в отличие от электродов обычных зондов представляют собой объёмные тела, поэтому расчёты электрического поля такого зонда более сложные, чем в случае точечных электродов. Общая длина трёхэлектродного зонда выбирается примерно 3,2 м; минимальная мощность пласта, которая выделяется этим зондом – 0,5 м, при длине центрального электрода 0,15 м. Диаметр зонда исходя из условия проходимости прибора по стволу скважины принят равным 70 мм.

Кривые трёхэлектродного зонда обладают высокой расчленяющей способностью, по ним достаточно уверенно выделяют пласты мощностью 0,5 -1,0 м. Применение трёхэлектродного зонда исключает экранные эффекты одного пласта другим. В связи с этим метод БК с трёхэлектродным зондом весьма эффективен при изучении тонкослоистых разрезов и неоднородных пластов, а также высокоомных разрезов.

Радиус исследования трёэлектродного фокусированного зонда сравнительно небольшой и составляет 1-2 м. Недостаток трёхэлектродного зонда: невозможно увеличить радиус исследования путём изменения его размеров.

Зонд семиэлектродного бокового каротажа (рис. 1 и 2, б) состоит из центрального электрода А0 и трех пар симметрично расположенных относительно него электродов M1 и М2, N1 и N2, A1 и A2. Симметричные одноименные электроды попарно соединены между собой. Через электрод А0 пропускают ток I0, сохраняемый постоянным по величине в процессе записи кривой. Электроды А1 и А2 являются экранными; через них пропускается ток, сила которого автоматически регулируется так, чтобы напряжение между электродами M1 и N1 или, что все равно (так как соответствующие электроды закорочены), между электродами М2 и N2, было равно нулю.

Так как выполняется условие, что напряжение между измерительными электродами М1 и N1 (а также между М2 и N2) равно нулю, то сила тока на участке скважины M1N1 и M2N2 также равна нулю. Получается, что будто бы скважина и прилегающие к ней участки пласта над электродом А0 и под ним были замещены изолятором (рис. 2, б). Ток, выходящий из электрода А0, распространяется на значительное расстояние в радиальном направлении (от скважины) слоем, перпендикулярным к оси скважины (горизонтально). Измеряемое напряжение ∆Uкс представляет собой падение потенциала по указанному слою от скважины до удаленной точки. Естественно, что на это падение потенциала скважина и вмещающие породы оказывают небольшое влияние. Это позволяет во многих случаях получить кажущееся удельное сопротивление, значительно более близкое к удельному, чем при обычных зондах; в частности, обеспечивается лучшая оценка удельного сопротивления тонких пластов.

Страницы: 1, 2, 3