рефераты

рефераты

 
 
рефераты рефераты

Меню

Аналіз гідрохімічних показників річки Стрижень рефераты

Визначення запаху досліджуваної води.

Бутиль, заповнену досліджуваною водою (на 3/4), щільно закривають, сильно перемішують, зразу відкривають і нюхають. Слабкий запах можна відчути при нагріванні. Досліджувану воду наливають у колбу, закривають Скляною пластинкою і нагрівають до 50°С (не більше). Потім піднімають пластинку та нюхають воду.

Для визначення смаку особливих вказівок не треба. Інтенсивність запаху та смаку можна характеризувати словами: без запаху та смаку, слабкий, помітний, сильний, дуже сильний. При цьому вказують, який саме запах має вода: невизначений, болотний, затхлий, гнилостний, сірководневий і т.п.


2.3 Прозорість води


Прозорість води змінюється в залежності від сезону, кількості завислих частинок, глибини водойм та багатьох інших причин. У нестратифікованих водоймах прозорість води знижується у придонному шарі внаслідок зростання каламутності, яка пов'язана з порушенням донних ґрунтів, у стратифікованих найбільша прозорість води спостерігається у гіполімніоні, а найменша — у зоні максимального розвитку фітопланктону. Знижується прозорість води в зоні термоклину за рахунок більш високої її щільності та затримки детриту.

Прозорість води змінюється в залежності від кількості зважених в ній часток мінерального або органічного походження. Улітку, в період «цвітіння» водоймища, прозорість може дуже сильно знизитись, дякуючи великій кількості водоростей, які знаходяться у товщі води. Під час зимівлі, коли риба знаходиться у малорухомому стані, взмучені речовини мінерального походження можуть значно погіршити умови дихання і викликати збуджений стан у риби. Сильно каламутять воду стічні води крахмало-паточних і низки інших заводів. У цьому випадку зниження прозорості служить одним з показників забруднення водоймища зовні.

У Дніпрі та його водосховищах найбільша прозорість води спостерігається взимку, а найменша — під час весняної повені. Так, у Київському водосховищі в зимовий період вона становить 1,5—2,1 м, а в Каховському — 2,4—3,7 м.

Сонячна радіація проникає у воду лише на певну глибину. Основна її частина поглинається верхніми шарами води. Як уже відзначалось, при проходженні через атмосферу до поверхні Землі досягає сонячна енергія, яка дорівнює 150 Вт/м2. При проникненні у воду значна частина цієї енергії поглинається уже у верхніх шарах води. Так, при прозорості 0,7 м і висоті Сонця 12° поглинається однометровим шаром води близько 92 % енергії, при прозорості 1,2 м і висоті Сонця 39° — до 76 %, а при прозорості 1,6 і висоті Сонця 58° — до 46 %.

Негативно впливають на проникнення сонячної радіації у товщу води зарості вищих водяних рослин. Так, у порівнянні з відкритими акваторіями на поверхню води з рогозом широколистим (50—60 % заростевого покриття) надходить 40 %, а з очеретом звичайним (90—95 % заростевого покриття) — тільки 25 % сонячної радіації. Ще менше надходить сонячної енергії в товщу води. Наприклад, на глибині 0,3 м у заростях лепешняку плаваючого із заростевим покриттям 90 % надходить 15 %, а при покритті 60 % — 80 % сонячної енергії. Поглинання у верхніх шарах води значної частини сонячної радіації різко обмежує поширення у товщі води фотосинтезуючих рослин. Вони можуть розвиватись на відносно невеликій глибині у континентальних водоймах, морях і океанах.

Верхній шар води, в якому є достатня кількість світла для синтезу рослинами органічної речовини з використанням сонячної енергії, називається фотичним, нижній шар, куди не надходить сонячна енергія, — афотичним. Зона проникнення світла, в якій інтенсивність фотосинтезу перевищує інтенсивність дихання рослин, має назву евфотичної зони. її нижня межа, де фотосинтез урівноважує інтенсивність дихання, називається компенсаційним горизонтом.

У воді найінтенсивніше поглинаються довгі хвилі сонячної радіації, які енергетично найбільш близькі до відповідних параметрів фотобіологічних процесів. Випромінювання, що проникає крізь товщу прісних і морських вод, зосереджене переважно в блакитній частині спектру і має довжину хвиль 475 – 480 нм. У процесі фотобіологічних реакцій енергія сонячної радіації поглинається дискретними частинками, які називаються фотонами, або квантами. Фотосинтез у бактерій протікає у спектральному діапазоні 400 - 900 нм, вищих зелених рослин — 400 - 700 нм, водоростей — 400 - 550 нм. Якщо хвилі коротші від 300 нм, порушується молекулярна структура білків і нуклеїнових кислот, і відповідно — нормальне функціонування живих систем. Ось чому несуть загрозу біосфері скорочення і розриви озонового шару, який затримує проникнення на Землю саме таких квантів сонячного випромінювання.

При прозорості води найінтенсивніше процес фотосинтезу протікає на глибинах відповідно до 1,5 і 6, 3 м, де величина фотосинтетичної активної радіації не падає нижче 0,17 - 0,22 Дж/см2, оскільки для максимальної інтенсивності фотосинтезу необхідно саме така величина сонячної радіації.

Сонячна радіація відіграє виключно важливу роль у функціонуванні водних екосистем. З нею пов'язана поведінка і розселення гідробіонтів у біотопах. Серед них є організми, які інтенсивно розвиваються у верхніх шарах води, куди надходить найбільше сонячної енергії. Це переважно автотрофні організми: водорості, фотосинтетичні бактерії, вищі водяні рослини. У процесі фотосинтезу вони запасають велику кількість енергії у вигляді первинно продукованої органічної речовини (первинної продукції), яку потім використовують організми інших трофічних рівнів.

Інші процеси, які протікають за участю сонячної енергії, не пов'язані безпосередньо з перетворенням сонячного світла в енергію хімічних сполук. Світло може виступати як інформативний фактор, що керує поведінкою водяних рослин і тварин. Наприклад, фотоперіодичні реакції рослин, які синхронізують етапи репродуктивного циклу рослин, здійснюються за допомогою пігменту фітохрому [25].

У водяних тварин репродуктивні цикли теж пов'язані з фотоперіодичними реакціями, опосередкованими через пігментні системи. Такі реакції водяних організмів, як фототаксис та фототропізм, залежать від освітлення водойм.

Прозорість визначається безпосередньо на водоймищі за допомогою гладкого металевого диску, обов'язково білого кольору. Диск для вимірювання прозорості має по краям отвори, за допомогою яких його прикріплюють до тросу, який розмічений кольоровими лоскутами через кожні 10 см. Диск опускають у воду до тих пір, поки він не зникне з поля зору та піднімають, поки він знову стане помітним. Середня величина зникнення диску при зануренні і глибини появи його при підніманні і буде умовною величиною прозорості води, яку виражають у сантиметрах.

Каламутність визначається на глаз і характеризується якісно ( незначна, значна, осад при відстоюванні і т. д.) [30].


2.4 Кольоровість води


Кольоровість прісних вод визначається в умовних одиницях - градусах платиново-кобальтової шкали. Кольоровість води, яка перевищує 30°, береться як висока.

Колір природних вод залежить від забарвлення розчинених у ній речовин, завислих частинок та мікроорганізмів, що населяють водну товщу. Він зумовлений поєднанням властивостей водного середовища, берегів водойми та метеорологічними факторами. На колір води впливають завислі речовини автохтонного (внутрішньоводоймного) та алохтонного (надходять ззовні) походження [27].

Власний колір води (блакитний) виявляється лише у воді деяких чистих гірських озер. Цей колір залежить від вибіркового поглинання променів сонячного спектру: найперше у воді затухають найдовші світові хвилі (червоної частини спектру), а останніми — короткі хвилі його синьої частини. Сонячне світло, проходячи через воду, втрачає червоні промені, поступово перетворюючись з білого в синє.

Природні води можуть мати зелене, жовте, буре і навіть чорне забарвлення, що зумовлено переважно наявністю гумінових речовин.

Крім того, колір води часто змінюється внаслідок масового розвитку певних планктонних організмів («цвітіння»). Це так зване вегетаційне забарвлення. Зокрема, при «цвітінні» синьо-зеленими водоростями вода набуває відповідного кольору, а при їх розкладі — навіть темно-синього внаслідок виділення пігментів фікоціану і фікобілінів. Зелені водорості забарвлюють воду в зелений колір, діатомові надають їй жовтуватого відтінку, дуналіела солоноводна (Dunaliella salina), червона евглена (Euglena rubra) і примнезій маленький (Primnesium parvum) — червоного кольору.

Кольоровість прісних вод визначається порівнянням досліджуваного зразку зі стандартними розчинами, виготовленими з хлорплатинату калію (К2РtСl6) та хлористого кобальту (СоСl2*6Н2О). Можна також приготувати стандарт з К2Сr2О7 та хлористого кобальту. Зважують на аналітичних вагах 0,0872 г К2Сr2О7 і 2 г хлористого кобальту, розчиняють реактиви у невеликій кількості дистильованої води в мірній літровій колбі, додають 1 мл концентрованої сірчаної кислоти (H2SO4) та доводять дистильованою водою до 1 л. Кольоровість цього розчину дорівнює 500°. Стандарти для порівняння готують розведенням вихідного розчину дистильованою водою, 1 л якої вміщує 1 мл концентрованої сірчаної кислоти.

У випадку неможливості приготування повної шкали стандартів, кольоровість визначають у парних колориметричних циліндрах однакового діаметру з нефарбованого скла, поділених на мілілітри (від 1 до 100) і забезпечених знизу скляними кранами. В один з таких циліндрів наливають (до мітки) досліджувану воду, у інший - стандартний розчин, кольоровість якого не дуже відрізняється від кольоровості досліджуваної води (такий стандарт отримують розчиненням у 5, 10, 20 або 50 разів вихідного розчину в 500°). Дивлячись зверху униз (крізь увесь шар рідини) на білому фоні, зливають інтенсивніше зафарбовану рідину до тих пір, поки колір рідини в обох циліндрах не буде однаковим. Висота столбу рідини обернено пропорційна інтенсивності її зафарбування. Тому кольоровість досліджуваної води розраховують за формулою:

Кольоровість висота столба стандарту (мл)*кольоровість стандарту (градуси) (градуси) висота столба досліджуваної води (мл)


2.5 Вміст хімічних речовин


Під густиною розуміють масу одиничного об'єму води в кілограмах на 1 м3 — (кг/м3). Вона залежить від температури, наявності розчинних солей, а також від атмосферного тиску та вищерозташованих мас води.

Найбільша густина хімічно чистої води, яка практично не має розчинених солей, при температурі 3,98°С дорівнює 1 г/см3. Із зниженням температури до 0°С, коли вода ще не перетворилась у лід, її щільність становить 998,87 кг/м3. При переході у стан льоду вона відразу зменшується до 916,7 кг/м3. Падає густина і при підвищенні температури води вище 4°С. При досягненні 30°С вона становить 995,67 кг/м3.

Збільшення густини води з підвищенням температури пояснюється зближенням молекул при таненні льоду, внаслідок чого зникають міжмолекулярні порожнини. Подальше зростання температури призводить до розходження молекул Н2О, внаслідок чого густина води стає меншою від одиниці. Зміна густини води при різних температурах характеризується такими показниками:


На густину води впливає, крім температури, також кількість розчинених солей. Із зростанням мінералізації дещо підвищується і густину води. Але між температурою, мінералізацією і густина води немає лінійної залежності. Тобто, густина води зменшується в меншій мірі, ніж це можна було чекати від ступеню зростання температури води і її мінералізації. Така властивість води обумовлює виключно важливу її роль у забезпеченні стійкості водних екосистем та підтриманні якості води. Наприклад, при змішуванні вод різної температури і мінералізації утворюється змішана вода, яка має дещо більшу густину, ніж кожна з них окремо. Так, при надходженні морської солоної води в Дніпровсько-Бузький лиман, де вона змішується з прісною, спостерігається ущільнення річкової води, що і обумовлює її зосередження переважно у придонних шарах. Перехідна зона між окремими масами води, які мають різну температуру і солоність і в якій спостерігається ущільнення вод, називається гідрологічним фронтом. Така зона може виявлятись на межі між прісними і солоними водами у гирлах річок (естуарний фронт), які впадають у море.

Подібні явища спостерігаються у Чорному морі біля берегів Криму як наслідок підйому глибинних більш холодних вод на поверхню під час згону вітром вод поверхневого шару. Таке явище отримало назву апвелінг [27].

Завдяки таким процесам відбувається міграція біогенних елементів з донних відкладень у фотичний шар води (шар води, в якому достатня кількість світла для синтезу рослинами органічної речовини з використанням сонячної енергії) і, як наслідок, активізація продукційної діяльності фітопланктону, зростання біомаси як фіто-, так і зоопланктону. Фактор густини води відіграє дуже важливу роль у житті пелагічних організмів. Найбільші коливання густини води спостерігаються в місцях гідрофронтів в екотонних екосистемах, розташованих на межі змішування морських солоних і прісних вод, що надходять з річковим стоком.

На відміну від морських вод з однотипним сольовим складом, прісні води різних ландшафтних зон за складом головних іонів суттєво відрізняються.

Згідно з класифікацією О.О. Альокіна [27], природні води поділяють за сольовим складом на три класи: гідрокарбонатні (С), сульфатні (S) і хлоридні (СІ). Кожен клас за переважаючими макрокомпонентами розбивається на три групи: кальцієву, магнієву та натрієву, а кожна група, в свою чергу, за кількісним співвідношенням іонів поділяється на чотири типи (І, II, III, IV).

Води типу І утворюються або в процесі хімічного видужування вивержених порід, або при обмінних процесах Са2+ та Mg2+ на Na+. Ці води найчастіше маломінералізовані.

Води типу II — змішані. Склад їх може бути пов'язаним генетично як з осадовими породами, так і з продуктами вивітрювання вивержених порід. До цього типу належать води більшості річок, озер та підземні води малої та помірної мінералізації.

Води типу III включають деяку частину сильно мінералізованих вод або вод, що зазнали катіонного обміну Na+ на Са2+ або Mg2+. До цього типу належать води океанів, морів, лиманів, реліктових водойм та багато інших сильно мінералізованих вод.

До типу IV, для якого характерним є відсутність НСО3-, належать кислі води. Це води боліт, шахтні, вулканічні води або води, що сильно забруднені промисловими стоками.

Характеристики вод позначаються так: клас — хімічним символом відповідного аніону (С, S, СІ), група — символом катіону (Са, Na, Mg). Приналежність до типу позначається римською цифрою в нижньому індексі, до групи — символом у верхньому індексі. Наприклад, СIICa — гідрокарбонатний клас, група кальцію, тип II; CIIIMg — хлоридний клас, група магнію, тип III і т. д. Класифікація якості поверхневих вод суші та естуаріїв за критеріями іонного складу наведена таблиці 2.1.


Таблиця 2.1

Класифікація якості поверхневих вод суші та естуаріїв за критеріями іонного складу

Класи

Гідрокарбонатні (С) води

Сульфатні (S) води

Хлоридні (СІ) води

Група

Са

Mg

Na

Са

Мg

Na

Са

Mg

Na

Тип

І II III

І II III

І II III

II III IV

II III IV

І II III

II III IV

II III IV

І II III


Загальна характеристика поверхневих вод суші за сольовим складом здійснюється на підставі таких основних показників, як загальна мінералізація, співвідношення іонів та вміст хлоридів і сульфатів.

На більшій частині Європейського континенту води річок мають невелику або середню мінералізацією і належать переважно до гідрокарбонатного класу, кальцієвої групи. Для степових і напівпустельних зон більш характерною є підвищена мінералізація вод сульфатного класу. В Європі такі річки займають лише 3 - 4 % площ усіх річкових басейнів. Ще менше річкових басейнів, води яких відносять до хлоридного класу натрієвої групи. Як правило, такі води характеризуються високою мінералізацією.

На території України річкові води належать переважно до карбонатного класу. Основними іонами сольового складу води Дніпра та його водосховищ є гідрокарбонати та Са2+, тобто вода належить до гідрокарбонатного класу групи кальцію другого типу (СIICa).

Мінералізація і вміст окремих іонів у воді певного водного об'єкта залежить від сезону року. У пік весняної повені мінералізація води в річках знижується внаслідок надходження снігових вод. Після закінчення весняної повені вміст солей знову підвищується. Особливо таке зростання солоності води стає відчутним у літню межень та взимку, коли в річці збільшується роль живлення ґрунтовими водами.

Формування сольового складу зарегульованих річкових систем визначається не тільки складом води, яка надходить із водозбірної площі, а й характером внутрішньоводоймних процесів. При багаторічному регулюванні стоку мінералізація води може підвищуватись лише до певного рівня, тобто до встановлення сольової рівноваги. Сезонні коливання мінералізації та іонного складу води великих водосховищ обумовлюються, головним чином, притоком річкових вод, а при каскадному їх розташуванні — надходженням води з вищерозташованих водосховищ та незарегульованих ділянок річки.

Для невеликих водосховищ у формуванні іонного складу води важливу роль відіграє також змив розчинених солей із прибережних схилів, надходження ґрунтових вод та атмосферних опадів, випаровування, відбирання води на господарські потреби.


2.6 Кислотність


Активна реакція води визначається концентрацією вільних іонів водню (Н+). рН=7 - рідина має нейтральну активну реакцію, рН більше 7 характеризує лужну реакцію, рН менше 7 - кислу реакцію води. Слаболужною називають реакцію води, яка відповідає значенням рН від 7 до 8, слабокислою - рН від 6 до 7. Хоча багато риб та водних безхребетних легко переносять широкі коливання рН, але для рибоводних ставків найбільш сприятлива рН від нейтральної до слаболужної (7-8). Кисла реакція водоймищ є одним з факторів, які викликають бідність їх населення. Кисла реакція середовища шкідливо впливає на дихання та обмін речовин риб, а це призводить до неповного засвоєння живлення, порушення азотистого (білкового) обміну, що призводить до уповільнення росту. У кислому середовищі змінюється і склад крові риб. Нейтральна та слаболужна реакція притаманна більшості найбільш продуктивних водойм. При такій реакції води внесення штучних добрив у ставки дає найбільший ефект. Слаболужна реакція особливо сприяє розкладенню гумусових речовин.

Страницы: 1, 2, 3, 4, 5