рефераты

рефераты

 
 
рефераты рефераты

Меню

Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов рефераты

Коэффициенты вариации. Согласно известным закономерностям, коэффициент вариации является показателем либо мощности самой системы (применительно к нашим объектам – показателем интенсивности водообмена), либо масштабов влияния внешних факторов на систему. Зачастую оба обстоятельства действуют совместно. Внешними факторами в нашем случае могут быть колебания климата, различия в геолого-геоморфологических условиях в бассейнах, неоднородность хозяйственного освоения, особенно гидротехническое строительство.

Результаты расчетов коэффициентов вариации приведены в таблице 7.


Таблица 7. Коэффициенты вариации гидрометеорологических характеристик

Реки

Показатель

Ока

Истья

Проня

Пёт

Мокша

Гусь

Модуль стока

19,7%

20,3%

44,0%

43,5%

39%

29,5%


м/с Павелец

м/с Елатьма

Осадки

16,67%

16,61%


Они свидетельствуют о существенно меньших колебаниях атмосферных осадков по сравнению со стоком. В этом находит подтверждение принцип изменчивости функций геосистем, которому Дьяконов К. Н. придает статус ландшафтного закона. Согласно данному принципу в любой геосистеме колебания внешних факторов меньше, чем собственных параметров на выходе, то есть временная изменчивость осадков меньше, чем параметра на выходе – стока.

В бассейнах высшего порядка происходит взаимная компенсация колебаний стока, следовательно, коэффициент вариации вновь снижается, но даже для Оки он не достигает столь низких значений, которые свойственны осадкам.

Принцип изменчивости функций объясняется внутренней сложностью системы, когда многократно передающийся импульс от компонента к компоненту увеличивает «шум», а трение расстояния – специфика любой пространственной системы – дополнительно снижает стабильность системы. Все это наблюдается в изучаемых бассейнах, особенно в тех из них, которые отличаются внутренним разнообразием природных условий (Мокша, Пёт). Максимума этот показатель достигает у Прони, так как наряду с разнообразием условий бассейн данной реки приурочен к возвышенности, где интенсивность водообмена повышена, а также имеются два водохранилища. Для Прони характерна совокупность факторов, наиболее благоприятствующая росту временных колебаний стока. Это как факторы мощности системы, так и факторы внешних воздействий.

Временные колебания осадков в Павельце несколько выше, чем в Елатьме. Колебание внешних воздействий по осадкам также высоко.

Анализ влияния климатических факторов на речной сток. Согласно данным литературы наиболее значимо речной сток зависит от колебаний осадков, в первую очередь, зимнего периода. Меньшее значение имеют метеоусловия теплого времени, так как реки переходят на автономный режим питания, а осадки подвергаются испарению и транспирации.

В случае близкого расположения к поверхности грунтовых вод возможно их испарение и снижение стока, но такие процессы характерны для более юго-восточных районов и для Рязанской области это в целом нетипично.

Важное влияние на сток могут оказывать метеоусловия переходных сезонов, в первую очередь апреля и октября, так как именно в данное время осуществляется подпитка грунтовых вод.

В случае интенсивного перевода поверхностного стока в подземный в данном сезоне среднегодовой сток будет более стабильным. Причем особую значимость для стока имеют условия предшествующего сезона.

Для установления связи стока с климатическими факторами использовались суммы осадков теплого (май - сентябрь), холодного (ноябрь – март) периодов, средняя температура за указанный период, температура и осадки апреля и октября.

Расчет производился для бассейнов рек Гусь и Проня, как бассейнов, ближайших к метеостанциям, по которым имеется наиболее полный ряд данных – Елатьма и Павелец. Использовался метод пошаговой регрессии с постепенной выбраковкой факторов, влияние которых на результат незначимо (см. пункт 2.3).

В ходе анализа рассчитывался также коэффициент детерминации – R2, характеризующий степень адекватности уравнения, реальных данных и вероятность ошибки (приемлемый уровень ошибки составляет 0,05 (5%)).

Результаты представлены в таблице 8. Факторы в приведенных зависимостях перечислены в порядке убывания их значимости независимо от характера их влияния (знак коэффициента).


Таблица 8. Связь стока с климатическими параметрами по результатам регрессионного анализа

Объект

Уравнение зависимости

R2

Бассейн

р. Гусь

Y = -0,129 + 0,089ОСХП +0,063ОСо + 0,022ОСТП – 0,012ТХП

0,338

0,015


Бассейн

р. Проня

Y = 0,269 + 0,260ОСХП – 0,031ТХП – 0,030ТТП – 0,024То-пред

0,389

0,013

 

Примечание: ОСХП, ОСТП и ОСо – осадки соответственно холодного периода (ноябрь – март), теплого периода (май – сентябрь) и октября данного года, в сотнях мм; ТХП, ТТП и То-пред - температура соответственно холодного, теплого периодов и октября предыдущего года, в 0С;  - уровень значимости.


Для Гуся наиболее значимыми оказались осадки холодного периода и осадки октября предшествующего года, что вполне закономерно. Однако достаточно значимой является роль осадков теплого периода (увеличивают сток реки Гусь). Таким образом, в условиях Мещеры вполне возможно достаточно интенсивное дождевое питание рек. В этой связи выглядит закономерным то, что модуль стока увеличивается наиболее интенсивно именно в Мещере, поскольку и осадки увеличиваются осенью и зимой. Сток реки Гусь зависит и от температуры холодного периода (чем ниже температура, тем сильнее промерзает почва, тем лучше условия для весеннего стока, следовательно, коэффициент отрицательный). Однако данная взаимосвязь наиболее слабая. Таким образом, сток реки гусь зависит главным образом от осадков.

Для Прони максимального значения коэффициент достигает также для осадков холодного периода, но роль данного фактора на порядок более значительна, чем для Мещерских рек (развитие эрозионного рельефа). Также существенно увеличивается влияние температуры холодного периода на сток Прони. В числе факторов появляется температура теплого периода и температура октября предшествующего года (в обоих случаях зависимость отрицательная).

Таким образом, для Прони, расположенной южнее, значительную роль играет фактор испарения, что способствует снижению среднегодового стока. Для реки Гусь роль фактора испарения практически не проявлялась.

Бассейн Прони, расположенный в условиях практически полной распаханности и, кроме того, на возвышенности, характеризуется зависимостью стока от зимнего промерзания почвы, поэтому влияние зимних температур для Прони существенно выше, чем для Гуся, где в условиях преобладания лесной растительности, почва может вообще не промерзать.

Таким образом, различия в уровнях зависимости стока от климатических параметров определяются как зональными различиями, так и геолого-геоморфологическими факторами, причем последние, по нашему мнению, в целом преобладают. Также проявляется влияние хозяйственной деятельности.

Сравнение величин коэффициентов при осадках и температуре позволило заключить, что отклик поверхностного стока на колебания осадков в 7 – 9 раз более значителен, чем на изменение температуры. Предположительно в последние годы увеличивается роль температурного фактора в формировании поверхностного стока.

Остатки от уровня регрессии характеризуют степени стационарности во времени процесса стока. При анализе можно выявить годы, существенно отличающиеся от других по факторам формирования стока, когда на него влияли неучитываемые внешние воздействия. Наличие тренда в остатках свидетельствует о направленном изменении стока во времени.

Анализ остатков от уравнений, рассчитанных для Гуся и Прони, свидетельствует о наличии значимого положительного тренда, то есть о закономерном росте стока, что подтверждают и другие методы исследования. Хорошо заметно, что положительные аномалии «группировались» в основном в 90-е годы. Современная динамика, то есть динамика в первые годы XXI века пока еще не установлена. Возможно, многоводные годы сменятся маловодными.

Характер колебания остатков во времени содержит информацию о характере устойчивости систем водосборов, в частности, опираясь на данные Пузаченко Ю. Г. [8], можно сделать вывод, что процессы в бассейне реки Гусь соответствуют так называемой модели Лапласа (значительная роль циклических автоколебаний). График остатков для Прони больше соответствует модели Пуассона. Различия в данных моделях сводятся к разным скоростям процессов и различиям в эффективности саморегуляции.

Модель Пуассона характеризует малостационарный процесс с интенсивным нарастанием и практически полным отсутствием внутренних стабилизирующих факторов. В результате резко возрастают случайные колебания с большой амплитудой. По нашему мнению, это обусловлено особенностями рельефа Среднерусской возвышенности, который способствует высоким скоростям движения воды как при таянии снега или дождевом стоке, так и при стекании воды по руслам рек. Более равнинный рельеф Мещеры, даже при отсутствии водоупора – юрских глин, способствует стабилизации процессов стока.

Итогом анализа особенностей формирования стока бассейнов рек является классификация водотоков на основе мер связности их гидрологических режимов (рис. 3.4.3). Четко выделяется две группы бассейнов: реки Мещеры и Окско-Донской равнины (Гусь, Пёт, Мокша) и реки более возвышенной территории (Истья, Проня, Ока). Внутри каждой группы прослеживается весьма тесная взаимосвязь. Это происходит из-за сходства природных условий формирования стока. Связь между группами выражена слабее, но также довольно значительна (коэффициент корреляции составляет 0,676). Это связано с близостью расположения бассейнов, что обусловливает сходство климатических параметров.

 

Рис. 3.4.3. Классификация водотоков Рязанской области на основе мер связности их гидрологических режимов

4.4 Климат как фактор динамики региональных экосистем

Как известно, 1990-е годы признаны самыми теплыми за последние 100 лет, и за последние 1000 лет. Изменения климатических условий за последние десятилетия оказывают значительное влияние на динамику экосистем.

Рассмотрим, как данные изменения повлияли на сельское хозяйство. Ю.А. Израэль и О.Д. Сиротенко была рассчитана динамика урожайности яровых зерновых культур в Ставропольском крае. Выяснилось, что климатообусловленная урожайность последних 20 лет увеличилась на 30% по сравнению с аналогичным по продолжительности периодом в середине прошлого века. Обеспеченность урожаев, превышающих 2 т/га, повысилась при этом более чем в пять раз. Также заметно увеличились влагозапасы метрового слоя почвы в июле на европейской территории России.

Согласно рассматриваемым в [11] сценариям на территории России с развитым сельским хозяйством ожидается увеличение осадков до 20 – 30% как зимой, так и летом. Температура зимнего периода будет расти быстрей, чем температура воздуха в теплый период года.

При глобальном потеплении существенно изменится физико-географическая зональность территории. Резко сократится площадь полярно-тундровой зоны – в европейской части России тундра должна практически исчезнуть. Значительно сократится и зона тайги, но пояс широколиственных лесов, занимающий сейчас сравнительно небольшую площадь, при потеплении образует сплошную широтную зону от западной границы страны до Тихого океана. Степная и лесостепная зона также расширится и продвинется на север до южных границ Московской области.

Однако при интерпретации подобных данных необходимо проявлять осторожность, учитывая, что эти модели отражают лишь необходимые, но не достаточные условия смены растительного покрова.

Анализ классического показателя теплообеспеченности растений – суммы температур воздуха за период с температурой выше 100С выявил, что северная граница земледелия, совпадающая с изолинией сумм, равной 10000С, к середине текущего столетия достигнет побережья Белого и Карского морей, т. е. почти вся европейская территория России станет пригодной для земледелия.

Изолиния сумм температур 22000С определяет северную границу территории, где в 90%лет могут созревать ранние сорта кукурузы, т.е. возможно интенсивное земледелие. Более того, в России появятся территории с суммами температур, превышающими 3400 – 36000С, где может быть создана база субтропического земледелия (хлопчатник, цитрусовые и др. теплолюбивые культуры).

При потеплении климата земельные ресурсы для интенсивного сельского хозяйства возрастут в 1,5 раза, а биологическая продуктивность земель в среднем на 25 – 30%.

Рассмотрим для Рязанской области изменение таких параметров как суммарная солнечная радиация, гидротермический коэффициент Селянинова, первичная биопродуктивность ландшафтов.

На рисунке 1.4.4 изображено изменение годовой суммарной радиации по данным метеостанций Павелец и Елатьма. Как видно, за период с 1936 по 2003 произошло некоторое снижение данного показателя на величину, примерно равную 90 – 100 МДж/м2. Этому способствовало усиление влияния Атлантики, а именно рост количества циклонов. Максимум же наблюдался в конце 30-х гг. за счет устойчивой антициклональной погоды, формировавшейся вследствие закономерной эволюции форм циркуляции атмосферы в северном полушарии. Распространение на европейскую территорию отрогов Азорского максимума и Азиатского антициклона было необходимым и закономерным этапом этой эволюции [10]. В последние годы вновь наблюдается рост данного показателя, однако он не достиг уровня конца 30-х гг. XX века.

Рис.1.4.4. Изменение годовой суммарной радиации за период с 1936 по 2003 годы

 

Также нами был рассчитан гидротермический коэффициент Селянинова (рис. 2.4.4) – «коэффициент увлажнения вегетационного периода» – характеризует сбалансированность ресурсов тепла и влаги в период активной вегетации. Он позволяет дать приближенную оценку благоприятности климата для сельскохозяйственных культур. По данным большинства авторов, максимальные урожаи зерновых отмечаются при ГТК=1,2; значения свыше 2,0 свидетельствуют о значительном переувлажнении (наблюдалось в 1978, 1990, 1993); ГТК менее 0,6 соответствует сильной и очень сильной засухе (отмечалась в области повсеместно в 1936, 1938, 1972 гг., в 1981 и 2002 гг. – только в Мещере). Анализ динамики ГТК показывает, что происходящие изменения направлены в сторону оптимизации увлажнения: тенденция к переувлажнению 1970-1980-х гг. сейчас не проявляется, а среднее значение ГТК за период «глобального потепления» (начиная с 1970 г.) практически точно составляет – на севере и на юге области – «оптимальное» значение 1,2 (против 1,0 в середине ХХ в.). Этим, в частности, можно объяснить высокие урожаи прошлых лет на территории Рязанской области.

Рис. 2.4.4. Изменение гидротермического коэффициента Селянинова по данным метеостанций Павелец и Елатьма


В таблице 9 охарактеризованы вековые изменения климатических условий функционирования различных растительных сообществ. Из таблтцы следует что наблюдаемая климатическая динамика отличается прежде всего сопряженным ростом ресурсов тепла и влаги («термогумидным трендом»), причем происходят не просто изменения средних значений метеоэлементов, но существенные климатические сдвиги, способные в будущем повлиять на границы природных зон.

В частности, климатическая ситуация в начале XX века в Елатьме благоприятствовала развитию там хвойно-широколиственных подтаежных лесов. В настоящее время возрастание суммы активных температур до 23800С, а количества осадков примерно до 700 мм пока еще не препятствует функционированию подтаежных геосистем, но обеспечивает возможность существования дубово-осиновых лесов и остепненных сосняков.

Таблица 9. Изменения условий существования растительных сообществ в Рязанской области в связи с климатической динамикой (с 1930-х гг. по начало XXI в.)

Район метео-станции

 Период

Средние значения:

Возможность существования сообществ:

r, мм

хвойных и смешанных лесов

широколиственных лесов, лесостепи, степи

Павелец

1936-1940

2493

412

-

Типчаково-ковыльные засушливые степи

1936-1969

2315

464

-

Луговые степи

1970-2003

2295

546

Остепненные сосняки, дубово-сосновые неостепненные леса (приуральские)

Луговые степи, дубово-осиновые леса

2001-2003

2439

562

Остепненные сосняки, дубово-сосновые неостепненные леса (приуральские)

Луговые степи, дубово-осиновые леса, восточноевропейские дубравы

Елатьма

1886-1935

2319

572

Остепненные сосняки, дубово-сосновые неостепненные леса (приуральские)

Луговые степи, дубово-осиновые леса

1936-1940

2455

405

-

Типчаково-ковыльные засушливые степи

1936-1969

2288

516

Остепненные сосняки

Луговые степи, дубово-осиновые леса

1970-2003

2295

640

Остепненные сосняки, дубово-сосновые неостепненные леса (приуральские)

Луговые степи, дубово-осиновые леса, восточноевропейские дубравы

2001-2003

2381

688

Дубово-сосновые неостепненные леса (приуральские)

Луговые степи, дубово-осиновые леса, восточноевропейские дубравы, грабово-дубовые мезофильные леса

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11