рефераты

рефераты

 
 
рефераты рефераты

Меню

Разработка месторождений газоконденсатного типа рефераты

2. Исследование процесса нормального испарения выпавшего конден­сата в пористых средах с различными проницаемостью и водонасыщенностью. Решение этой задачи необходимо для оценки зависимости интенсив­ности испарения компонентов выпавшего конденсата от таких параметров пласта-коллектора, как проницаемость и водонасыщенность, что сущест­венно при доразработке истощенной газоконденсатной залежи.




Таблица 2

Эксперименты по испарению выпавшего конденсата

Номер эк­сперимента


Номер модели пласта


Проницаемость, 10-15м2


Водонасыщен-ность, %


2 2а 3 За 36 4 4а


Бомба PVT КД-2-3 КД-6-7 КД-2-3 КД-6-7 КД-2-3 КД-6-7


64 9,1 64 9,1 64 9,1


0 0 10 30 30 10



В качестве модели пластовой ГКС использованы во всех случаях мно­гокомпонентные смеси алкановых углеводородов, близкие по своим физи­ко-химическим свойствам к пластовой смеси исходного (до начала разра­ботки) состава Вуктыльского НГКМ, имеющей следующие характеристики: содержание С1 - 79,1; С2 - 8,8; С3 - 3,9; С4 - 1,8; С5+ - 6,4,% (молярная доля); молекулярная масса С5+ приблизительно 115 г/моль; кон-денсатогазовый фактор около 330 г/м3; давление начала конденсации около 25 МПа; давление максимальной конденсации 6 ± 1 МПа.

Изучение процессов фильтрации модельной ГКС на режиме истоще­ния, а также создание водонасыщенности физических моделей пласта про­водились по разработанной во ВНИИГАЗе методике с использованием со­ответствующей экспериментальной установки [5].

Результаты исследований обрабатывали с помощью ЭВМ и специально разработанной программы расчетов всех рассматриваемых при моделиро­вании параметров.

Для удобного (в рамках данной работы) анализа результатов исследо­ваний выполненные эксперименты сгруппировали в следующие серии (см. табл. 1.18):

исследование влияния проницаемости "сухой" (без связанной воды) пористой среды на компонентоотдачу (эксперименты 2, 2а, 3);

то же для пористой среды, содержащей 10 % от объема пор связанной воды (опыты За, 4а);

то же для пористой среды, содержащей 30 % от объема пор связанной воды (эксперименты 4, 3b).

Рассмотрим особенности углеводородоотдачи истощаемого газокон-денсатного пласта, пористая среда которого является "сухой", то есть не содержит связанную воду. Данный случай имеет не только теоретическое, но и практическое значение, поскольку содержание связанной воды во многих газоконденсатных залежах весьма незначительно (единицы процен­тов объема пор). Целесообразность проведения экспериментов без связан­ной воды, обусловлена также необходимостью оценить влияние пористой среды на массообменные процессы при сравнении результатов с данными, полученными на бомбе PVT.

На рис.2—7 представлены отдельные результаты сравнения ди­намики состава продукции истощаемого пласта и некоторых параметров добываемой смеси для моделей пласта с различной проницаемостью (сосуд PVT-соотношений можно условно рассматривать как образец пористой среды с весьма высокой проницаемостью, например, 10-10—10-11м2). Из сравнения графиков следует, что с уменьшением проницаемости от 10-10 — 10-11 м2 (эксперимент №2) до 64.10-15м2 (№ 2а) и далее до     9,1-10-15 м2 (№3) происходит снижение давления максимальной конденсации компонентов пластовой смеси. Особенно это проявилось у низкомолекулярных компо­нентов.

Для исследования типичных, но сравнительно "легких" газоконденсат­ных смесей (молекулярная масса фракции С5+ в смеси исходного состава равна 115 г/моль) наблюдается интенсивный рост содержания в продукции компонентов С2+ после снижения пластового давления ниже давления мак­симальной конденсации, причем вне зависимости от испарения конденсатогазовый фактор продукции после снижения давления ниже давления максимальной конденсации вновь возрастает (рис. 4), достигая вдвое больших, чем при давлении максимальной конденсации, значений к кон­цу отбора пластовой смеси (p=1 МПа). КГФ растет за счет компонентов С5 и С7; декан (С10) практически не испаряется. При этом молекулярная масса фракции С5+ почти монотонно снижается во всей области давлений, от pрнк до р =1 МПа (рис. 5).


                  C2-4 % (Молярная доля)

Рис.2.


Зависимость содержания фракции С2-4 в равновесной газовой фазе от «пластового» давления:

1 – сосуд PVT-соотношений; пористая среда без связной воды с проницаемостью:

2 – 64·10-15 м2

3 – 9,1·10-15 м2

Если поведение кривой "содержание фракции С2-4 , % как функции пластового давления" аналогично поведению соответствующей кривой для фракции С5+ (график КГФ), то и зависимость молекулярной массы фрак­ции С2-4 также аналогична этим двум кривым; в области давлений ниже давления максимальной конденсации молекулярная масса С2-4  вновь увели­чивается, в отличие от этого параметра для стабильного конденсата.

Сопоставление результатов экспериментов на физических моделях пласта с бомбовыми данными показывает, что пористая среда в обследо­ванном диапазоне не препятствует процессу нормального испарения вы­павшего конденсата, хотя некоторые детали массообменных процессов в пустотелом сосуде PVT-соотношений и в пористой среде, естественно, раз­личаются. Так, представляет интерес область давлений от 8—10 до 13 — 15 МПа (рис. 5, 6). Здесь заметно нарушается монотонный характер уменьшения молекулярной массы стабильного конденсата (фракция С5+), что обусловливается вступлением в область максимальной конденсации фракции промежуточных углеводородов (см. рис.2). По-видимому, сме­щение равновесия для этих углеводородов в сторону (нормального) испаре­ния оказывает влияние на конденсацию легкой части фракции С5+, близ­кой по химическому составу к промежуточным углеводородам: конденса­ция С5+ заметно затормаживается, причем более заметно в пористой среде с меньшей проницаемостью, по сравнению с сосудом PVT-соотношений (см. рис. 6).


Рассмотрим особенности углеводородоотдачи истощаемых газоконденсатных пластов, различающихся коллекторскими свойствами (прони­цаемостью), пористая среда которых содержала связанную воду в количе­стве 10% объема пор (см. табл. 1.29). В данном случае сосуд PVT не рас­сматривается, сравниваются лишь эксперименты с частично водонасыщенными пористыми средами, различающимися проницаемостью (64-10 -15м2 — эксперимент №3а;  9,1-10 -15 м2 — эксперимент №4а).

Анализ результатов показал, что зависимости состава продукции и ее параметров от давления близки к тем, что характеризуют процесс истоще­ния сухой пористой среды. Известно, что связанная вода, как правило, за­нимает наиболее мелкие поры, "выключая" их таким образом из процесса фильтрации и ухудшая сорбционные свойства коллектора. Поэтому при­сутствие воды в определенной степени сгладило различия между пористы­ми средами с большей и меньшей проницаемостями. Тем не менее и в этом случае для более проницаемой пористой среды зависимость содержания, в частности, углеводородов С2-4 в продукции от текущего давления в "пласте" расположена несколько выше (рис. 7).

Графики зависимости молекулярных масс фракций от текущего плас­тового давления также аналогичны тем, что получены на "сухих" пористых средах.










Результаты экспериментов 4 и 36 (см. табл. 2), выполненных на тех же моделях пласта, но при более высоком содержании связанной воды в их пористых средах (30 % объема пор), в данной работе не приведены, так как они в значительной мере аналогичны результатам исследований на "сухих" моделях.

Повышенное содержание связанной воды лишь еще больше сглажива­ет различия между пористыми средами с большей и меньшей проницаемостями.

Таким образом, анализируя полученные результаты, можно сделать следующие выводы.

Процесс глубокого истощения газоконденсатной системы типа вуктыльской до давления порядка 1 МПа, моделируемый как в сосуде PVT-соотношений, так и в пористых средах с различной проницаемостью и водонасыщенностью, начиная с давления максимальной конденсации (т. е. при р =• 5 — 7 МПа), характеризуется наличием области нормального испа­рения для компонентов от С5 до С8 — С9.

Компоненты жидкой фазы пластовой смеси в процесс нормального испарения вовлекаются тем активнее, чем ниже их молекулярная масса.


 

 









                                                                           































                                                                                                                                                                               










При значениях молекулярной массы выше 100 г/моль выход компо­нентов мало изменяется в процессе снижения пластового давления от 5 — 7 до 1 МПа, а резкое снижение в продукции доли компонентов С10+ позво­ляет утверждать, что практического значения добыча этой высокомолеку­лярной части пластовой смеси в области давлений нормального испарения иметь не может, в отличие от легкой части пластовой смеси (фракции С2-С„).

Значения проницаемости, а также водонасыщенности вмещающей газоконденсатную смесь пористой среды в исследованной области практиче­ски не влияет на особенности процессов дифференциальной конденсации и нормального испарения газового конденсата.

Таким образом, при той газоконденсатной характеристике, какую имеет вуктыльская пластовая углеводородная смесь, динамика фазовых проницаемостей в пористой среде с типичными коллекторскими свойства­ми не столь драматична, как при разработке месторождения Нокс-Бромайд. Из средних по проницаемости и пористости объемов перового пространства вуктыльского пласта-коллектора на завершающей стадии разработки будут извлекаться углеводороды, в том числе за счет процесса нормального испарения. Естественно, в худших по сравнению со средними зонах коллектора возможны явления, из-за которых часть запасов углево­дородов будет блокирована и составит неизвлекаемые пластовые потери. На снижение потерь, в том числе и этих, направлено предложенное ВНИИГАЗом и реализуемое на Вуктыле в районе УКПГ-8 и УКПГ-1 воз­действие на пласт сухим неравновесным газом.



Afc   , г/моль


115


105


о 1 • 2 Д 3


95


85

25

15

р,Мпя                   



                                                                Сайклинг-процесс

Увеличение коэффициента конденсатоотдачи, а нередко и газоотдачи при разработке газоконденсатных месторождений может быть достигнуто пу­тем возврата в пласт в течение определенного периода времени добытого газа, из которого предварительно извлечены компоненты С2+ или С3+. Та­кой режим разработки, обеспечивающий отбор пластового газа с началь­ным высоким или слабо уменьшающимся содержанием конденсата (благодаря поддержанию давления) получил название сайклинг-процесса. Впервые применять его начали в конце 30-х годов, в годы второй мировой войны, когда резко возросла потребность в жидких углеводородах как сы­рье для производства моторных топлив, а потребность в углеводородном газе, напротив, несколько уменьшилась. В 1944 г. в США функционировали 37 установок для осуществления сайклинг-процесса при общем количестве разрабатываемых газоконденсатных месторождений 224. Обратная закачка «отбензиненного» газа применялась в тот период времени не только в США, но и в Канаде и ряде других газодобывающих стран, причем даже на таких газоконденсатных месторождениях, начальное содержание кон­денсата в газе которых составляло всего 150—180 г/м3. По окончании вой­ны вследствие заметного изменения структуры потребления углеводородов и соответствующей динамики цен на жидкие и газообразные углеводороды объемы обратно нагнетаемого в пласт газа резко снизились. Удовлетвори­тельные технико-экономические показатели при реализации сайклинг-процесса стали получать только на ГКМ с начальным содержанием кон­денсата в газе не ниже 250 — 300 г/м3. Основной упор делался на реализа­цию вариантов частичного сайклинг-процесса, когда объем возвращаемого в пласт газа меньше объема газа, отбираемого из пласта. Одновременно значительно возросла доля нагнетаемых в пласт неуглеводородных газов. В целом, однако, количество объектов, на которых применялся сайклинг-процесс, очень сильно уменьшилось. Тем не менее часть газоконденсатных месторождений США, Канады, некоторых других стран разрабатывались и продолжают разрабатываться в режиме обратного нагнетания газа. Накоп­ленный опыт применения сайклинг-процесса в различных условиях и на месторождениях с разными геолого-промысловыми характеристиками по­требовал более глубокого обоснования каждого проекта разработки, пре­дусматривавшего возврат в пласт газа. Стала очевидной необходимость тщательного изучения характера неоднородности пласта — потенциального объекта нагнетания сухого газа. С другой стороны, исследования ВНИИ-ГАЗа доказали, что, во-первых, частичный сайклинг-процесс при низких пластовых давлениях может по своим показателям не уступать процессу при высоких, близких к начальному, давлениях, а во-вторых, можно по­высить эффективность процесса, если учитывать состав пластовой смеси. Речь идет о целесообразности использования влияния промежуточных уг­леводородов (этан-пропан-бутановой фракции) на испаряемость ретроград­ного конденсата в газовую фазу в послепрорывный период. При этом бы­ло показано, что испарение ретроградного конденсата — весьма длитель-нцй процесс, и в течение многих лет после прорыва закачанного газа воз-моЦно получать из скважин продукцию с высоким промышленным содер­жанием конденсата.

В связи с тем, что в рыночных условиях при колебаниях спроса на газ и жидкие углеводороды повышается вероятность реализации на россий- ских газоконденсатных месторождениях сайклинг-процесса, мировой опыт его применения представляет большой интерес [10, 26, 44].

Ниже анализируются результаты осуществления сайклинг-процесса зарубежом, а также результаты единственного, практически реализованного в странах СНГ сайклинг-процесса на Новотроицком ГКМ (Украина).

Опыт проектирования разработки крупнейшего газоконденсатного месторождения Канады Кэибоб чрезвычайно интересен в смысле комплек­сного решения проблемы использования полезных ископаемых с учетом требований по охране недр и окружающей среды.

Газоконденсатное месторождение Кэибоб, открытое в сентябре 1961 г., расположено в провинции Альберта, в 300 км к северо-западу от г. Эдмонтона. Продуктивные отложения, сложенные в основном пористы­ми доломитами, приурочены к рифогенному массиву верхнего отдела сви­ты Свои Хиллс, образующему вытянутую с северо-запада на юго-восток структуру длиной около 60 км и шириной 3,5 — 9 км. Эти отложения ос­ложнены межрифовым каналом значительных размеров, положение кото­рого четко не зафиксировано. Створ канала заполнен плотными известня­ками. По всей площади месторождения, пласты которого регионально по­гружаются в юго-западном направлении с наклоном 1,05 м/км, продуктив­ные отложения подстилаются темными битуминозными карбонатами ниж­него отдела свиты Свои Хиллс средней мощностью 33 м. Наряду с плотны­ми известняками здесь представлены и пористые доломиты. Мощность продуктивного горизонта изменяется в пределах от 0 до 109 м. Покрыш­кой залежи служат плотные битуминозные известняки свиты Беверхилл Лейк. Таким образом, ловушка газа и конденсата на месторождении Кэи­боб образовалась в результате литологического выклинивания и литологи-ческого экранирования в подошве и кровле.

Начальное пластовое давление в газоконденсатной залежи, приве­денное к абсолютной отметке средневесовой плоскости массива 2307 м, составляет 32,4 МПа. Пластовая температура = 114 °С), как и давление, аномально высокая для глубин залегания около 2300 — 2350 м. Запасы пластового газа площади В составляли 93,5 млрд. м3, в том числе запасы товарного сухого газа — 63,3 млрд. м3, конденсата (С5+) — 40,6 млн. м3, сжиженных газов (С3 —С4) — 20,5 млн. м3, серы — 21,1 млн.т. В целом по месторождению запасы пластового газа были равны 110,6 млрд. м3, конденсата — 48 млн. м3.

Страницы: 1, 2, 3, 4, 5, 6, 7