рефераты

рефераты

 
 
рефераты рефераты

Меню

Реферат: Шпаргалка по химии рефераты

67. Соли щелочных Ме

Во всех своих соедх щелочные Меы существуют в виде однозарядных катионов. Это относиться как к бинарным соедм – галогенидам, халькогенидам, нитридам, карбидам, так и к солям со сложными многоатомными анионами.

Электростатические взаимодействия в ионных кристаллических решетках, содержащих однозарядные катионы, не очень велики, и энергии гидратации ионов оказываются вполне соизмеримы с ними. Поэтому, за редкими исключениями, соли щелочных Ме хорошо р-ряются в воде. Хуже других р-римы фториды, карбонат и фосфат лития и перхлораты калия, рубидия и цезия.

При сильном нагревании солей, особенно при внесении их в пламя горящего водорода или бытового газа, происходит ряд процессов приводящих к появлению характерной окраски пламени.

Соли щелочных Ме находят самое широкое применение как в лабораторной практике, так и в различных областях пром и медицины.

Особенно широко используются карбонат и  гидрокарбонат натрия, известные под общим названием сода. В технике и в быту различают кристаллическую соду Na2CO3×10H2O, кальцинированную соду – безводный карбонат Na2CO3 и питьевую соду – NaHCO3. Кроме того, следует упомянуть, что термин каустическая сода или каустик используется в технике для обозначения NaOH.

Основные потребители соды – стекольное, мыловаренное, бумажное, текстильное производство. Сода служит исходным продуктом для получения других солей натрия. Питьевая сода широко применяется в медицине. В лабораторной практике сода используется для нейтрализации кислот при несчастных случаях.

68. ЩеМе  одни из наиб акт эл-ты в хим отнош. Их активность обусл низкими знач энергии ионизации – легкостью отдачи ими валентых эл-нов. Хим акт возраст от Ли к Цз. Все ЩеМе энергично соедин с О2. Рб и Цз самовоспламен-ся, остальн. загораются при несильном нагревании. Энергично взаимод-уют с Г-нами, ос. с Ф  и Хл. Вытесн Н2 из Н2О с обр-нием щелочей. ЩеМе – энерг. восстанов. Гидриды ЩеМе имеют ионное строение: Ме- катион, Н – анион. Большинство солей щеМе хор рас-мы в Н­2О.

65. Щелочные Меы непосредственно взаимодействуют с водородом, образуя гидриды MH. Наиб характерна эта реак для лития: 2Li + H2 = 2LiH В отличие от соед с p-элементами, в которых водород находится в положительной степени окисления, в гидридах щелочных Ме он присутствует в степени окисления  –1, образуя гидридный анион H. В отсутствие Н2О гидрид лития не реагирует с кислородом и галогенами, но Н2О немедленно его разлагает: LiH + H2O = LiOH + H2­ В этой реакции протон выступает в роли окислителя, а гидридный анион – восстановителя: H+ + H- = H2  Гидриды остальных щелочных Ме менее устойчивы и более реакционноспособны. Их свойства определяются свойствами гидридного аниона, т.е. они являются сильными восстановителями

66. Несмотря на то, что щеМеы во всех своих соедх находятся в единственной степени окисления  +1, каждый из них образует несколько бинарных соед с кислородом. Кроме нормальных Ох-в существуют перОх-ы, суперОх-ы и озониды щелочных Ме. Образование таких соед обусловлено в большей мере свойствами кислорода, чем свойствам щелочных Ме. Особенности элементов первой группы в образовании соед с кислородом заключаются в том, что относительно большие однозарядные ионы обладают малым поляризующим действием и не дестабилизируют молекулярные ионы кислорода. При горении в кислороде получаются Ох лития, перОх натрия и суперОх-ы остальных Ме: 2Li + 1/2O2 = Li2O            2Na + O2 = Na2O2                K + O2 = KO2  ПерОх лития может быть получен косвенным путем. Ох-ы получают из продуктов сгорания, нагревая их с соответствующим Меом: Na2O2 + 2Na = 2Na2O2                 KO2 + 3K = 2K2O При взаимодействии калия, рубидия и цезия с озоном образуются озониды: K + O2 = KO3 Большинство соед с кислородом окрашено. Ох-ы лития и натрия бесцветны, но уже Na2O2 имеет светло-желтую окраску, KO2 – оранжевого, RbO2 – темно-коричневого цвета. Естественно, что нормальные Ох-ы щелочных Ме практически не проявляют ни окислительных, ни восстановительных свойств, тогда как остальные соед являются сильными окислителями. Большая часть органических веществ (эфир, уксусная кислота, древесные опилки, хлопок) реагируют с Na2O2 или KO2 со вспышкой или со взрывом. ГидрОх-ы Все бинарные соед элементов I группы с кислородом реагируют с Н2О, образуя гидрОх-ы. Например: Li2O + H2O = 2LiOH,        Na2O2 + 2H2O = 2NaOH + H2O, 2KO2 + 2H2O = 2KOH + H2O2 + O2­ ГидрОх-ы щелочных Ме, называемые щелочами, в воде хорошо р-римы и практически полностью диссоциированы: NaOH ( кр) = Na+ (p-p) + OH- (p-p) В чистом виде это твердые бесцветные вещества, плавящиеся без разложения при  @ 300 – 500 °C. Только гидрОх лития при нагревании выше Тпл = 445 °C теряет воду: 2LiOH = Li2O + H2O  Твердые гидрОх-ы и их конц р-ры сильно гигроскопичны, они жадно поглощают влагу и используются для осушения газов, не обладающих кислотными свойствами, в частности аммиака. Уже при обычных условиях твердые щелочи легко реагируют с «кислотами» газами – CO2, SO2, NO2, галогенами, галогено- и  ХГНами. Поэтому щелочи широко используются для поглощения таких газов и очистки от них О2, N2, H2. В силу этих причин как твердые щелочи, так и их р-ры следует хранить в плотно закрытой посуде. Наиб прим находит NaOH – едкий натр, который в громадных количествах получают в пром электролизом р-ра хлорида натрия. Он широко применяется при производстве целлюлозы, искусственного шелка, при рафинировании жидких растительных масел и нефти, в мыловаренной пром, при синтезе красителей и в других химических производствах.

69. Особенности элементов первой группы в образовании соед с кислородом заключаются в том, что относительно большие однозарядные ионы обладают малым поляризующим действием и не дестабилизируют молекулярные ионы кислорода. При горении в кислороде получаются Ох лития, перОх натрия и суперОх-ы остальных Ме:

2Li + 1/2O2 = Li2O            2Na + O2 = Na2O2                K + O2 = KO2

ПерОх лития может быть получен косвенным путем.

Ох-ы получают из продуктов сгорания, нагревая их с соответствующим Меом:

Na2O2 + 2Na = 2Na2O2                 KO2 + 3K = 2K2O

При взаимодействии калия, рубидия и цезия с озоном образуются озониды:

K + O2 = KO3

Большинство соед с кислородом окрашено. Ох-ы лития и натрия бесцветны, но уже Na2O2 имеет светло-желтую окраску, KO2 – оранжевого, RbO2 – темно-коричневого цвета.

Естественно, что нормальные Ох-ы щелочных Ме практически не проявляют ни окислительных, ни восстановительных свойств, тогда как остальные соед являются сильными окислителями. Большая часть органических веществ (эфир, уксусная кислота, древесные опилки, хлопок) реагируют с Na2O2 или KO2 со вспышкой или со взрывом.

ПерОх натрия получают в пром в больших количествах путем сжигания Меического натрия в токе воздуха. При взаимодействии его с Н2О идет реак гидролиза:

O22- + H2O = OH- + HO2-

Водные р-ры перОха натрия – достаточно сильные окислители и широко используются для отбеливания органических средств – древесной массы, тканей, меха.

Смесь перОха натрия с суперОха калия применяется в изолирующих дыхательных аппаратах, так как в этом случае число молей выделившегося кислорода может быть равно числу молей поглощенного CO2:

Na2O2 + CO2 = Na2CO3 + 1/2O2

2KO2 + CO2 = K2CO3 + 3/2O2

При соотношении Na2O2 : KO2 = 1 : 2 поглощение CO2 происходит без изменения общего давления.

70. Li  Li – s-элемент 1s22s1. У лития, имеющего только один валентный электрон и большой атомный радиус, энергия ионизации значительно меньше, чем у бериллия (5,39эв против 9,32эв у Be). Это типичный Ме элемент, щелочной Ме. Однако от остальных щелочных Ме Li отличает небольшой размер атома и иона; Li по свойствам напоминает также магний.  Для лития наиб характерно образование ионной связи. Поэтому координационное число Li в соедх в отличие от остальных элементов второго периода больше 4. Вместе с тем вследствие небольшого размера ион лития характеризуется высокой энергией сольватации, а в Liорганических соедх Li образует ковалентную связь. Li достаточно широко распространен в земной коре (0,002ат.%). Природный Li состоит из двух стабильных изотопов: 6Li (7,3%) и 7Li (92,7%). Искусственно получены радиоактивные изотопы. Наибольшую ценность имеют минералы сподумен LiAl(SiO3)2, амблигонит LiAl(PO4)F и лепидолит Li2Al2(SiO3)3(F, OH)2. Li – единственный элемент, реагирующий при обычных условиях с азотом. Поскольку при контакте с воздухом одновременно протекают реакции с кислородом и влагой, лития, как и другие щелочные Меы, можно хранить только без доступа воздуха. При горении лития на воздухе одновременно образуются и Ох, и нитрид: 2Li (кр) + 1/2O2 (г) = Li2O (кр),               DH° = -598кДж; 3Li (кр) + 1/2N2 (г) = Li3N (кр),               DH° = -164кДж. При небольшом нагревании Li реагирует с водородом, углеродом, фосфором и другими элементами, образуя многочисленные бинарные соед, в кристаллах которых он присутствует в виде однозарядного криптона. При реакх с органическими галогенами образуются Liорганические соед. C2H5Cl + 2Li = C2H5Li + LiCl. Это чрезвычайно реакционно-способные вещества, загорающиеся при контакте с влажным воздухом. Их хорошая р-римость в неполярных р-рителях указывает на ковалентный характер связи лития с органическим радикалом. Часто эти соед образуют полимеры, в которых координационное число лития достигает четырех.  Li используется в специальных легких сплавах, Liорганические производные широко применяются при синтезе различных классов органических соед. В виде простого вещества Li – мягкий серебристо-белый Ме (т. пл. 179.°C, т. кип. 1370°C). Из Ме он самый легкий (пл. 0,534 г/см3). Li высоко химически активен. С кислородом и азотом взаимодействует уже при обычных условиях, поэтому на воздухе тотчас окисляется, образуя темно-серый налет продуктов взаимодействия (Li2O, Li3N). При температуре выше 200°C загорается. В атмосфере фтора и хлора, а так же в парах брома и йода самовоспламеняется при обычных условиях. При нагревании непосредственно соединяется с серой, углем, водородом и другими неМе. Будучи накален, горит в CO2. С Ме Li образует интерМе соед. С магнием, Al, цинком и с некоторыми другими Ме, кроме того, образует ограниченные твердые р-ры. Заметно отличается атомным радиусом от остальных щелочных Ме, дает с ними эвтектические смеси. Li придает сплавам ряд ценных физико-химических свойств. Например, у сплавов Al с содержанием до одного процента лития повышается механическая прочность и коррозионная стойкость, введение двух процентов лития в техническую медь значительно увеличивает ее электропроводность и т.д. Li по хим активности уступает некоторым Ме, хотя значение его стандартного электродного потенциала наиб отрицательное (E°298= -3,01 в). Это обусловлено большой энергией  гидратации иона Li+, что обеспечивает смещение равновесия Li(т) ó Li+(p) + e- в сторону ионизации Меа в значительно большей степени, чем это имеет место у остальных щелочных Ме. Для слабо сольватирующих р-рителей (например, в расплавах солей) значение его электродного потенциала соответствует его еньшей хим активности в ряду щелочных Ме. Li энергично разл воду, выделяя из нее H2; еще легче взаимод кислотами. Важнейшей областью прим лития, как источника трития является атомная энергия. Li, кроме того, используется в кач теплоносителя в атомных реакторах.

73. Впервые Меы I группы (Na и K) были получены английским химиком Х. Дэви в 1807г. электролизом щелочей, откуда и возникло их групповое название – щелочные Меы. В чистом виде элементы I группы – легкие, мягкие, блестящие Меы, быстро тускнеющие на воздухе из-за окисления кислородом и реакции с Н2О.

Величина Li Na K Rb Cs Fr

Энергия ионизации атомов I1,

Эв (кДж/моль)

5,4

(520)

5,1

(492)

4,3

(415)

4,2

(405)

3,9

(386)

……

Сродство атомов к электрону,

Эв (кДж/моль)

0,6

(57)

0,3

(29)

0,5

(48)

0,4

(39)

0,4

(39)

Электроотрицательность 1,0 1,0 0,9 0.9 0,9
Энтальпия атомизации, кДж/моль 159 107 89 81 77
Температура плавления, °C 180 98 64 39 29
Температура кипения, °C 1340 886 761 690 672

Ме радиус

Атома, нм

0,155 0,189 0,236 0,248 0,268 0,28

74. Общ хар-ка ЩеЗеМе, нахожд. в природе, получ.  К щеземе отн. Са Sr и Ва. При сжигании щеземе всегда полу Ох. ПерОх-ы гораздо менее стойки, чем перОх-ы щеме. Окс Са, Sr, Ba соед с Н2О обр-я Гидрокс. Щеземе соедин с Н2 обр-я гидриды. Соедин с N2, обр-я нитриды. СО +2. Са (3%): известняк ,мел, мрамор, - разновидн СаСО3. Гипс СaSO4×2H2O, фосфориты и силикаты. Ме Са получ электролитич способом (электролиз расплава СаХл2), алюминотермическим методом, термиеской диссоциация СаС2. Sr (0,04%) –целестин SrSO4, стронцианит SrCO3. Ва (0,05%)-барит ВаЭсО4, витерит ВаСО3.

71. ГидрОх-ы ЩеМе. Их получ и св-ва. Все бинарные соед элементов I группы с кислородом реагируют с Н2О, образуя гидрОх-ы. Например: Li2O + H2O = 2LiOH,        Na2O2 + 2H2O = 2NaOH + H2O, 2KO2 + 2H2O = 2KOH + H2O2 + O2­ ГидрОх-ы щелочных Ме, называемые щелочами, в воде хорошо р-римы и практически полностью диссоциированы: NaOH ( кр) = Na+ (p-p) + OH- (p-p) В чистом виде это твердые бесцветные вещества, плавящиеся без разложения при  @ 300 – 500 °C. Только гидрОх лития при нагревании выше Тпл = 445 °C теряет воду: 2LiOH = Li2O + H2O Твердые гидрОх-ы и их концентрированные р-ры сильно гигроскопичны, они жадно поглощают влагу и используются для осушения газов, не обладающих кислотными свойствами, в частности аммиака. Уже при обычных условиях твердые щелочи легко реагируют с «кислотами» газами – CO2, SO2, NO2, галогенами, галогено- и халькогеноводородами. Поэтому щелочи широко используются для поглощения таких газов и очистки от них кислорода, водорода, азота. В силу этих причин как твердые щелочи, так и их р-ры следует хранить в плотно закрытой посуде. Наибольшее применение находит NaOH – едкий натр, который в громадных количествах получают в пром электролизом р-ра хлорида натрия. Он широко применяется при производстве целлюлозы, искусственного шелка, при рафинировании жидких растительных масел и нефти, в мыловаренной пром, при синтезе красителей и в других химических производствах.

72. Применение ЩеМе. Ли прим-ся в ядерной энергетике, 6Li – источник д/пр-ва трития, 7Li – теплоноситель в урановых реакторах. Прим. в Ме д/удаления следов Н2, N2, О2, S. LiF, LiCl вх. в сос-в флюсов, исп при плавке Ме и сварки Мг и Ал. Ли и его соеди – топливо д/ракет. LiOH – сос-в электролит щелочн аккумул. Цз ИРб – изгот фотоэл-тов. Na: атомная энергетика, Ме-гия, пром органич синтеза, содержится в рганизме в виде раств солей. К: калийные удобрения, в организме внутри клеток.

75. Закономерности изменения св-в Ме и их соедин в ряду Be-Ra Первые 2 Ме (Ве и Мг) отлич от ост. 4-х эл-тов. Ве схож с Ал. Все изотопы Ра – радиоактивны. Бе и Иг взаимод с Н2О оч. медленно, т. к. обр при этом гидрОх-ы малориств в Н2О: покрывая поверхн Ме они затр реакцию. Ост. реаг с Н2о энергичнее. В наружн е слое эл-ты имеют 2 е, а во 2-м снаружи у Бе – 2, у остальных – 8. Химич. активн этих ме не намного < чем у щеме. . Be(OH)2 – амфотерное основание, Mg(OH)2 – основание средней F, Ca(OH)2 – сильное основание, Sr(OH)2 и Ba(OH)2 – основания, сильнее, чем Са(ОН)2. Ох-ы этих Ме  довольно огнестойки. Стойкость к повыш т ослабевает от Ве к Ра. Многие соли щеземе малораств в Н2О (карбонаты, сульфаты, фосфаты и др). Большинство солей Be, в т. ч. сульфат хорошо раст-мы в Н2О. В Н2О – рас-рах ионы Ве2+ полверг. гидролизу, из-за чего р-ры солей Ве имеют кислую реакц.   Большинство солей магния хорошо р-римо в воде

76. Al(OH)3 представляет собой объемистый студенистый осадок белого цвета, практически нер-римый в воде, но легко р-ряющийся в кислотах и сильных щелочах. Он имеет, следовательно, амфотерный характер. Однако и основные и особенно кислотные его свойства выражены довольно слабо. В избытке NH4OH Al(OH)3 нер-рим. Одна из форм дегидратированного гидрОха - алюмогель используется в технике в кач адсорбента.

При взаимодействии с сильными щелочами образуются соответствующие алюминаты: NaOH + Al(OH)3 = Na[Al(OH)4] С кислотами Al(OH)3 образует соли. Ох Al представляет собой белую, очень тугоплавкую (т. пл. 2050оС) и нер-римую в воде массу. Природный Al2O3 (минерал корунд), а также  полученный искусственно и затем сильно прокаленный отличается большой твердостью и нер-римостью в кислотах. В р-римое состояние Al2O3 (т. н. глинозем) можно перевести сплавлением со щелочами.

77. Особенности Be и его соед в ряду щеземе. Токсичность соед Be. 2-й снаружи е-слой атома Be построен иначе, нежели у Vg и щеземе, поэтому Rатома<, Еиониз велика, кристаллич. решетка прочна. Be(OH)2- единственное в подгруппе основаие, облад. амфотерными св-вами, для атомов Be хар-на ковалентная связь в соедин, для оста Ме 2А гр – ионная. Be по св-вам сходем с Ал – диагональное сходство. BeO2 – белое, очень тугоплавкое вещ-во, примен. в кач. хим устойч огнеупорн матер, Be(OH)2 – практич. нераств в Н2О, но раств в к-тах и щелочах: Be(OH)2+2NaOHàNa2[Be(OH)4]. Большинство солей Be хорошо рас-мы в Н2О, соли щеземе в Н2О нераств. Все соед. Be – токсичны

78. Магний – серебристо-белый блестящий Ме, сравнительно мягкий и пластичный, хороший проводник тепла и электричества. На воздухе он покрывается тонкой Охной пленкой, придающей ему матовый цвет. Кристаллическая решетка магния отн к гексагональной системе. Разрушающе действуют на магний морская и минеральная Н2О, водные р-ры HCl, H2SO4, HNO3, H3PO4. При комнатной температуре на воздухе компактный магний химически стоек. На его поверхности образуется Охная пленка, предохраняющая Ме от окисления. При нагревании химическая активность магния повышается. Считается, что верхний температурный предел устойчивости магния в кислороде лежит в интервале 350–400 oC. На воздухе магний воспламеняется при температуре 600-650 oC, при этом образуется MgO, частично Mg3N2; при 400–500 oC в атмосфере H2 под давлением образуется гидрид MgH2. Реакции сопровождаются большим выделением тепла (чтобы нагреть стакан ледяной Н2О до кипения, достаточно 4 г магния) и мощным излучением ультрафиолета.

При нагревании магний взаимодействует с галогенами с образованием галогенидов; при 500–600 oC при взаимодействии с серой образуется MgS; при более высокой температуре возможно образование карбидов MgC2 и Mg2C3, силицидов MgSi и Mg3Si2, фосфида Mg3P2. Магний – сильный восстановитель, может вытеснить большинство Ме из их солей, H2 из Н2О и кислот.

Холодная Н2О на магний почти не действует, с горячей Н2О он медленно взаимодействует с выделением водорода. В разбавленных кислотах магний р-ряется даже на холоду. В HF магний не р-ряется, поскольку на поверхности образуется пленка из трудно р-римого в воде MgF2; в концентрированной H2SO4 почти не р-ряется. Большинство солей магния хорошо р-римо в воде. Р-ры содержат бесцветные ионы Mg2+, которые сообщают жидкости горький вкус. Соли Mg гидролизуются Н2О только при нагревании р-ра. Почти все галоидные соли магния расплываются на воздухе и легкор-римы в воде. Исключением является MgF2, р-римость которого весьма мала. Нитрат магния легкор-рим не только в воде, но и в спирте. Кристаллизуются он обычно в виде Mg(NO3)2×6H2O (т. пл. 90оС). При нагревании выше температуры плавления нитрат отщепляет не только воду, но и HNO3, а затем переходит в Ох. Для сульфата магния характерен легкор-римый кристаллогидрат MgSO4×7H2O. Почти нер-римый в воде нормальный карбонат магния может быть получен только при одновременном присутствии в р-ре большого избытка CO2.

85. Бориды, их получ. и св-ва. Бороводороды, их получ. строение и св-ва.  Бориды обр-ся при высок т, при соед В  с Ме. Многие бориды оч. тверды и хим. устойчивы, сохр эти св-ва при высок т. Хар-на тугоплавкость. Бороводороды (бораны) получ. при действии HCl на Mg3O2. Из всей семси получ бороводородоы выделены: В2Н6 (газ), В4Н6, В5Н9, В6Н10, В5Н10 (жидк), В10Н11 – твердые. Тетраборан  В4Н6 – летуч. жидк (т кип 18) с оч непр запах, пары кот. воспл на возд. При хранен В4Н6  разлаг с образ диборана В2Н6. – газ, т кип -92,5, на возд не загор, разлаг водой, как и др бораны, с отщепл Н2 и образ Н3ВО3. Атомы бора в молек боранов связаны Н2-мостиками: , пунктир – трехцентровая связь – общ е пара заним МО, охват три атома.

86. Борогидриды Ме. Самый простой и наиб часто встреч гидридный анион бора – ВН4- - борогидридный анион . Были получены борогидриды большиенства Ме. Самым распр борогидридом щеме являя NаBH4. – кристалл белое вещ-во, нелетуч и уст в сухом возд.

87. Прим. соед. В. Борная кислота примен при пригот эмалей и глазурей, в произв спец. сортов стекла, в бемажн и кожевен произ-ве, в ач дезинфец. ср-ва.  Бура Na2B4O7 примен при сварке, резании и паянии, в произв легкоплавк глазури, для фаянс и фарфор изделий, д/чугунной посуды, при изгот спец. сортов стекла, в кач. удобрения.

88. С кислотами Al(OH)3 образует соли. Производные большинства сильных кислот хорошо р-римы в воде, но довольно значительно гидролизованы, и поэтому р-ры их показывают кислую реакцию. Еще сильнее гидролизованы р-римые соли Al и слабых кислот. Вследствие гидролиза сульфид, карбонат, цианид и некоторые другие соли Al из водных р-ров получить не удается. Сульфат Al Al2(SO4)3.18H2O получается при действии горячей серной кислоты на Ох Al или на каолин. Применяется для очистки Н2О, а также при приготовлении некоторых сортов бумаги. Из остальных производных Al следует упомянуть его ацетат (иначе - уксуснокислую соль) Al(CH3COO)3, используемый при крашении тканей (в кач протравы) и в медицине (примочки и компрессы). Нитрат Al легко р-рим в воде. Фосфат Al нер-рим в воде и уксусной кислоте, но р-рим в сильных кислотах и щелочах.  Алюминаты наиб активных одновалентных Ме в воде хорошо р-римы, но ввиду сильного гидролиза р-ры их устойчивы лишь при наличии достаточного избытка щелочи. Алюминаты, производящиеся от более слабых оснований, гидролизованы в р-ре практически нацело и поэтому могут быть получены только сухим путем (сплавлением Al2O3 с Ох-ми соответствующих Ме). Образуются метаалюминаты, по своему составу производящиеся от метаалюминиевой кислоты HAlO2. Большинство из них в воде нер-римо.

79-80. Характер изменения кислотно-основных св-в однотипных соед в ряду Be, Mg, Ca, Sr, Ba, Ra. Be(OH)2 – амфотерное основание, Mg(OH)2 – основание средней F, Ca(OH)2 – сильное основание, Sr(OH)2 и Ba(OH)2 – основания, сильнее, чем Са(ОН)2. От be – ra увеличиваются основные св-ва, кислотные ослабюевают.

81.Амфотерность Be(OH)2. Be(OH)2  имеет ярко-выраженный амотерный хар-тер, чем отлич. от гидрОх-в щеземе. В Н2О практич. нераств, легко раств в к-тах и щелочах: Be(OH)2+2NaOHàNa2[Be(OH)4]. Кислотн. св-ва Be(OH)2  выражены очень слабо, поэтому в водн. р-ре бериллаты сильно гидролизуются.

82. Общ хар-ка солей щеземе. гидролиз солей Be, Mg.  Многие соли щеземе малораств в Н2О (карбонаты, сульфаты, фосфаты и др). Большинство солей Be, в т. ч. сульфат хорошо раст-мы в Н2О. В Н2О – рас-рах ионы Ве2+ полверг. гидролизу, из-за чего р-ры солей Ве имеют кислую реакц.   Большинство солей магния хорошо р-римо в воде. Р-ры содержат бесцветные ионы Mg2+, которые сообщают жидкости горький вкус. Соли Mg гидролизуются водой только при нагревании р-ра. Соли стронция и Ва сходны с солями Са. Они малор-римы ы воде и выпадают из р-ра в виде осадков, если ионы Стр и Ва встречаются с  ионами СО32- или SO42-. 

83. В2О3 и Н3ВО3, строение и св-ва. H2SO4. HNO3 окисл В в борную к-ту Н3ВО3РHJJfsdfd

. Н3ВО3 – белые крист, блест. чеш кот. раств в Н2О. при кипяч р-ра Н3ВО3  вместе с парами н2О Н3ВО3   тоже отчасти улетуч. Н3ВО3    - слабая к-та. В2О3 – борный ангидрид – бесцветная хрупкая стеклообразная масса, плавящ при т=300С. Очень огнестоет, не восстан С даже при белом калении. В воде раств с обр-нием Н3ВО3   и выдел теплоты.

84. Галогениды В, тетрафторбораты ме. С Г В реаг при нагрев и обр-ет вещ-ва ВГ3 – В в сос-нии сп2 – гибридиз, образ плоские молек с углами 1200 . ВГ3 – электродифицитные соедин. BF3 – едкий, бесцветн газ, ткип-101, реаг-ет с Н2О.  BCl3 – жидкость т кип = 12,5С. Дымит во влажном возд, гидролизуются полностью. BI3 – белое твердое вещ-во (т пл 3С.) Взаимод с Н2О со взрывом.  Комплексный анион BF-4­ – тетрафторборат-ион.

89. Алюмокалиевые квасцы KAl(SO4)2.12H2O применяются в больших количествах для дубления кож, а также в красильном деле в кач протравы для хлопчатобумажных тканей. В последнем случае действие квасцов основано на том, что образующиеся вследствие их гидролиза Al(OH)3 отлагается в волокнах ткани в мелкодисперсном состоянии и, адсордбируя краситель, прочно удерживает его на волокне.

90. Оющая хар-ка эл-тов IIIA группы. Характерные СО и типы соедин. Эл-ты 3а гр. имеют 3е в наружном слое атома, 2-й нар слой атома В имеет 2 е, Ал – 8е, Га, Ин, Та – 18е.  Ме св-ва выражены слабее, чем у эл-тов 2 и 1 а гр. У В преоблад немеет св-ва. В соедин хар-на СО +3. С возраст АтМ появл более низк со +2, д/Та хар-ны СО +1. Ме св-ва от В к Та увелич, Ох бора – кислотнй хар-р, Ал, Га, ин – амфотерн, таллий – основной.

91. Нитрид бора, строение и св-ва. Нитрид бора можно получить взаимод В с аммиаком при т белого каления – белое вещ-во со слоистой структурой, похож на структуру графита. Структ ед-ца содерж черед-ся атомы B и N на расст. 1,45А с углами 120 (Сп2 у В). Расстоян между слоями 3,34А. Нитрид устройчив на воздухе, но медленно гидролиз. Н2О.

92. гидрид Al можно получить косвенным путем. Он представляет собой белую аморфную массу состава (AlH3)n. Разлагается при нагревании выше 105оС с выделением водорода.

При взаимодействии AlH3 с основными гидридами в эфирном р-ре образуются гидроалюминаты: LiH + AlH3 = Li[AlH4]

Гидридоалюминаты - белые твердые вещества. Бурно разлагаются водой. Они - сильные восстан-ли. Применяются (в особенности Li[AlH4]) в органическом синтезе.

93. Ga, In, Tl. Общ хар-ка, нахожд в природе, св-ва и примен. Ga, In, Tl относ. к числу редких, в прир. в сколько –ниб больших конц не встреч. Получаются из Zn концентратов после выплавки Ц-ка. Ga, In, Tl – серебристо белые мягкие Ме, с низкими Тпл. Макс СО +3, могут проявл меньшую (Та +1). На воздухе стойки, Н2О не разлаг, легко раств в к-тах, а Га и Ин в щелочах. Ga: кварцевые термометы д/измер высок темп, сплавы, хорошо подд горяч обраб. In: д/покрытия рефлектороы, вкладышей подшипников, д/плавки препохранит, в полупроводниковой технике. Tl: в оптич. припборах, стекла с преломл способн, выпрямители, люминофоры, в фотоэлем.

94. Al. Общ хар-ка, нахожд. в природе, св-ва и применение. Al - самый распостраненный в земной коре Ме. (8%). Главная масса его сосредоточена в алюмосиликатах. Чрезвычайно распространенным продуктом разрушения образованных ими горных пород является глина, основной состав которой отвечает формуле Al2O3.2SiO2.2H2O. Из других природных форм нахождения Al наибольшее значение имеют боксит Al2O3.xH2O и минералы корунд Al2O3 и криолит AlF3.3NaF. В настоящее время в пром Al получают электролизом р-ра глинозема Al2O3 в расплавленнном криолите. Al2O3 должен быть достаточно чистым, поскольку из выплавленного Al примеси удаляются с большим трудом. Хар-ая СО атома Al +3. Al - типичный амфотерный элемент. Для него характерны не только анионные, но и катионные комплексы. В виде простого вещества Al - серебристо-белый, довольно твердый Ме с плотностью 2,7 г/см3 (т.пл. 660оС, т. кип. ~2500оС). Кристаллизуется в гранецентрированной кубической решетке. Характеризуется высокой тягучестью, теплопроводностью и электропроводностью (составляющей 0,6 электропроводности меди). С этим связано его использование в производстве электрических проводов. При одинаковой электрической проводимости алюминмевый провод весит вдвое меньше медного. На воздухе Al покрывается тончайшей (0,00001 мм), но очень плотной пленкой Оха, предохраняющей Ме от дальнейшего окисления и придающей ему матовый вид. Al легко вытягивается в проволоку и прокатывается в тонкие листы. Алюминиевая фольга (толщиной 0,005 мм) применяется в пищевой и фармацевтической пром для упаковки продуктов и препаратов.

Основную массу Al используют для получения различных сплавов, наряду с хорошими механическими качествами характеризующихся своей легкостью. Важнейшие из них - дурAl (94% Al, 4% Cu, по 0,5% Mg, Mn, Fe и Si), силумин (85 - 90% Al, 10 - 14% Sk, 0,1% Na) и др. Алюминиевые сплавы применяются в ракетной технике, в авиа-, авто-, судо- и приборостроении, в производстве посуды и во многих других отраслях пром. По широте применения сплавы Al занимают второе место после стали и чугуна.  Al, кроме того, применяется как легирующая добавка ко многим сплавам для придания им жаростойкости. При накаливании мелко раздробленного Al он энергично сгорает на воздухе. Аналогично протекает и взаимодействие его с серой. С хлором и бромом соед происходит уже при обычной температуре, с иодом - при нагревании. При очень высоких температурах Al непосредственно соединяется также с азотом и углеродом. Напротив, с водородом он не взаимодействует. По отношению к воде Al вполне устойчив. Но если механическим путем или амальгамированием снять предохраняющее действие Охной пленки, то происходит энергичная реак: 2Al + 6H2O = 2Al(OH)3 + 3H2­ Сильно разбавленные, а также очень концентрированные HNO3 и H2SO4 на Al почти не действуют (на холоду), тогда как при средних концентрациях этих кислот он постепенно р-ряется. Чистый Al довольно устойчив и по отношению к соляной кислоте, но обычный технический Ме в ней р-ряется.

При действии на Al водных р-ров щелочей слой Оха р-ряется, причем образуются алюминаты - соли, содержащие Al в составе аниона: Al2O3 + 2NaOH + 3H2O = 2Na[Al(OH)4] Al, лишенный защитной пленки, взаимодействует с водой, вытесняя из нее водород: 2Al + 6H2O = 2Al(OH)3 + 3H2­  Образующийся Al(OH)3 реагирует с избытком щелочи, образуя гидроксоалюминат: Al(OH)3 + NaOH = Na[Al(OH)4] Суммарное уравнение р-рения Al в водном р-ре щелочи: 2Al + 2NaOH + 6H2O = 2Na[Al(OH)4] + 3H2­ Al заметно р-ряется в р-рах солей, имеющих вследствие их гидролиза кислую или щелочную реакцию, например, в р-ре Na2CO3.

95. Соед одновалентного Tl .Токсичность соед Tl+. TlОН – сильное, хорошо раств в Н2О основан. Большинство солей Tl (1) хорошо раст-мы в Н2О, но соли НГ, подобно солям Аг почти нераств и отлич светочувств, иск TlF, кот в Н2о раств. Tl и его соедин. весьма токсичны.

96. Соед типа АВ. Арсенид индия и антимонид Га. Применение. Га и Ин склонны образ соедин с эл-тами V гр в соотнош 1:1, т.н соедин типа АВ, кот обладают св-вами полупроводников. Их можно получить при непосредтв взаимод эл-тов в свободном виде.  GaSb облад полупроводник св-вами и исп в полупроводник пром.

97. Сопоставление св-в В, Al, In, Ga, Tl. 3е в наружном слое атома, 2-й нар слой атома В имеет 2 е, Ал – 8е, Га, Ин, Та – 18е.  Ме св-ва выражены слабее, чем у эл-тов 2 и 1 а гр. У В преоблад немеет св-ва. В соедин хар-на СО +3. С возраст АтМ появл более низк со +2, д/Та хар-ны СО +1. Ме св-ва от В к Та увелич, Ох бора – кислотнй хар-р, Ал, Га, ин – амфотерн, таллий – основной.

98. применение AlCl3 в кач катализатора (при переработке нефти и при органических синтезах). Из фторалюминатов наибольшее применение (для получения Al, F2, эмалей, стекла и пр.) имеет криолит Na3[AlF6]. Промышленное производство искусственного криолита основано на обработке гидрОха Al плавиковой кислотой и содой: 2Al(OH)3 + 12HF + 3Na2CO3 = 2Na3[AlF6] + 3CO2 + 9H2O Гидридоалюминаты Применяются (в особенности Li[AlH4]) в органическом синтезе. Алюмокалиевые квасцы KAl(SO4)2.12H2O применяются в больших количествах для дубления кож, а также в красильном деле в кач протравы для хлопчатобумажных тканей. Сульфат Al Al2(SO4)3.18H2O Применяется для очистки воды, а также при приготовлении некоторых сортов бумаги.

99. В. Общ хар-ка, нахожд. в природе, получ, св-ва и прим. В распр в природе мало (10-3% масс): борная к-та Н3ВО3, ее соли (Бура Na2B4O7×10Н2О). природн В сос-ит из двух стабильных изотопов 10В и 11В. Н2О на В не действ, при т комн В соед только с F, на возд. не окисл, горит при 700С красноватым пламенем. При накаливании смеси В с С бр-ся карбид бора В4С – тугоплавк вещ-во. В обр-ет слабые к-ты, не проявл амфотерн св-в. В имеет черный цвет и по тверд уст только алмазу. Своб В получ восстан В2О3 магнием.При этом В выдел в виде аморфного порошка ос примесями. Чист кристаллич В получ термическим разложением или восстан его галогенидов, а таже разложением Н2-соедин В. ВН3 – летуч соедин самовоспламе. Прим. в ядерной технике, добавка к стали и др. цветным сплавам, насыщение изд бором – борирование – повышает твердость и стройкость к короззии.


Страницы: 1, 2


 © 2010 Все права защищены.