рефераты

рефераты

 
 
рефераты рефераты

Меню

Реферат: Создание и исследование шпаклевочных паст на основе УПС и АВС рефераты

Электрич. свойства ударопрочного полистирола такие же, как у полистирола.

С введением каучука снижается стойкость к окислению и УФ-излучению из-за наличия непредельных связей; материал стабилизируют введением антиоксидантов фенольного типа, двуокиси титана.

Получение. Для получения ударопрочного полистирола наибольшее распространение получили полимеризация в массе и так называемый блочно-суспензионный метод.

В первом случае бутадиеновый или бутадненстирольный каучук размельчают на дробилке и при комнатной температуре растворяют в стироле, вводят регуляторы молекулярной массы (димера α-метилстирола, меркаптаны), стабилизаторы (полигард) для каучука. Содержание каучука в растворе может составлять 4—15%. При нагревании раствора и (или) введении инициаторов (например, перекиси бензоила) параллельно протекают 2 процесса — гомополимеризация стирола и прививка стирола на каучук.

Прививка на каучук происходит в результате отрыва радикалами, образовавшимися при распаде инициатора, или радикалами стирола подвижных атомов водорода от метиленовой группы молекулы каучука, находящейся в α-положении по отношению к двойной связи. Средняя длина привитых полистирольных цепей и их ММР близки к соответствующим параметрам полистирола. Двойные связи каучука на этом этапе практически не расходуются.

Реакционная система остается гомогенной до накопления в ней 2—3% полистирола. По термодинамическим причинам в большинстве случаев два полимера не совместимы в общем растворителе (эффект Добри) и расслаиваются, образуя две фазы. Каждая фаза представляет собой раствор соответствующего полимера в общем растворителе и практически не содержит другого полимера. Дискретную фазу на этой стадии процесса образует раствор полистирола в стироле, непрерывную фазу — раствор каучука и привитого сополимера в стироле. При повышении содержания полистирола в реакционной системе наступает момент, когда объемы фаз становятся примерно равными. Происходит инверсия фаз, после которой дискретную фазу образует раствор каучука и привитого сополимера в стироле, а непрерывную — раствор полистирола в стироле. Поскольку вязкость каучуковой фазы намного выше вязкости полистирольной, а вязкость реакционной системы определяется в основном вязкостью непрерывной фазы, то инверсия фаз сопровождается скачкообразным понижением вязкости системы.

Из-за высокой вязкости инверсия затруднена и протекает до конца только при интенсивном перемешивании. Размер и форма частиц каучуковой фазы зависят от геометрии сосуда и мешалки, скорости сдвига, концентрации и молекулярной массы каучука, молекулярной массы полистирола, количества образовавшегося сополимера. При инверсии образующаяся дискретная фаза захватывает (окклюдирует) некоторое количество полистирола. При степени превращения стирола 30—40% двухфазная система становится устойчивой, и размер дискретных частиц перестает зависеть от условий перемешивания. Таким образом, структура ударопрочного полистирола формируется на стадии инверсии фаз.

В конце процесса, когда содержание стирола значительно уменьшается, происходит частичное сшивание дискретной фазы, приобретающей структуру сшитого микрогеля. На этой стадии продукт представляет собой расплав ударопрочного полистирола, содержащего небольшое количество непрореагировавшего стирола (0,5—10%).

В технике процесс осуществляют по непрерывной схеме аналогично полимеризации стирола. Часто для более плавной регулировки температурного режима (на завершающей стадии) сополимеризацию ведут в присутствии растворителя — толуола, этилбензола (10—30% от массы реакционной среды). Режим процесса рассчитывают таким образом, чтобы инверсия фаз полностью протекала в одном аппарате при контролируемых условиях перемешивания. На последующих стадиях важно, чтобы структура дискретной фазы не разрушилась из-за слишком высоких скоростей сдвига или высокой температуры. Непрореагировавший стирол и растворитель удаляют в вакуум-камере или вакуум-шнек машине. Продукт гранулируют.

Блочно-суспензионный процесс проводят по периодической схеме в двух аппаратах, снабженных мешалками и рубашками. В первом растворяют каучук в стироле и ведут полимеризацию в массе до степени превращения стирола 30—40%, как описано выше. За это время полностью заканчивается инверсия фаз, и частицы дискретной фазы уплотняются и приобретают устойчивость к коалесценции (слипанию); реакционную систему можно не перемешивать. Под давлением инертного газа ее передавливают во второй аппарат, содержащий деминерализованную воду и стабилизаторы суспензии, и вводят дополнительное количество инициатора. Реакционную массу суспендируют в воде при интенсивном перемешивании, и процесс ведут при 95 — 120оС под давлением до достижения предельной степени прекращения стирола. Ударопрочный полистирол, содержащий 0,1% С., отделяют от воды и обрабатывают как продукт суспензионной полимеризации.

Поскольку стоимость каучука примерно в 3—4 раза выше, чем полистирол, а увеличение содержания каучука приводит к снижению прочности при растяжении, модуля упругости и атмосферостойкости композиционного материала, целесообразно добиваться наибольшего эффекта упрочнения при минимальном содержании каучука.

Прививка стирола на эти эластомеры протекает значительно труднее. Применяют специальные методы — химнческую модификацию эластомера, добавляют сшивающие агенты. Все же эти продукты обладают сравнительно более низкой ударной прочностью, чем сополимеры на основе каучука. Прозрачный гетерогенный материал можно получить, уменьшая размер частиц дискретной фазы до значения, меньшего длины волны падающего света, или подбирая состав фаз таким образом, чтобы показатели преломления их совпали. Первый путь не пригоден при получении ударопрочного полистирола. Каучук имеет показатель преломления 1,52. Для понижения показателя преломления матрицы часть стирола заменяют метилметакрилатом (соотношение 30 : 70). Таким образом удается получить ударопрочный сополимер с прозрачностью 70—75% . Сополимеризацию проводят по непрерывной схеме в растворе ароматического углеводорода (например, в толуоле) или по периодической схеме блочно-суспензионным методом.

2.2. Ненасыщенные полиэфиры.

Хотя первые ненасыщенные полиэфиры фумаровой и малеиновой кислот были получены около девяносто лет тому назад, впервые производство этих полимеров было начато в начале сороковых годов. Важным этапом, способствующим широкому практическому применению полималеинатов и полифумаратов, явилось открытие способности этих полимеров сополимеризоваться с виниловыми мономерами с получением ценных конструкционных материалов.

В сороковые годы появились сообщения о производстве полимеров полимеризацией и сополимеризацией диаллилфталата к других аллиловых сложных эфиров. С 1947—1948 гг. в Советском Союзе техническое значение приобрели полиэфиракрилаты — полимеры, синтезируемые полимеризацией олигомерных эфиров с концевыми акрильными, метакрильными и другими ненасыщенными группами.

2.2.1. Полималеинаты и полифумараты

Наибольшее применение нашли ненасыщенные полиэфиры, получаемые доликонденсацией ненасыщенных дикарбоновых кислот, чаще всего малеиновой и фумаровой с многоатомными спиртами.

Обычно эти ненасыщенные полиэфиры используют в виде их 60—75%-ных растворов в различных мономерах, при сополиме-рязации с которыми они образуют неплавкие и нерастворимые полимеры пространственного строения. Такие растворы ненасы­щенных полиэфиров в непредельных мономерах называют ненасыщенными полиэфирными смолами. Использование ненасыщенных полиэфиров в виде их растворов обеспечивает, во-первых, более полное отверждение ненасыщенного полиэфира, а, во-вто­рых, понижает вязкость ненасыщенных полиэфиров, облегчая их применение в качестве связующего для армированных материалов.

Ненасыщенные полиэфирные смолы отличаются от многих других термореактив пых полимеров тем, что они способны отверждаться при комнатной или сравнительно невысокой темпе­ратуре без выделения каких-либо побочных продуктов. Это позволяет изготавливать из них изделия (в частности, армированные пластики) при низких давлениях, что имеет большое значение как с экономической, так и с технологической точек зрения. Ненасыщенные полиэфирные смолы получают в две стадия1. Вначале осуществляют поликонденсацию малеиновой или фу-маровой кислот или их смеси с модифицирующей насыщенной дикарбоновой кислотой с каким-либо гликолем (этиленглико-лем, диэтиленгликолем, пропиленгликолем, триэтиленгликолем, бутиленгликолем или их смесями). Реакцию проводят в распла­ве исходных компонентов при 170—230 °С в инертной среде или при более низких температурах (160—195 °С) в присутствии растворителей, образующих азеотропные смеси (например, ксилол) с выделяющейся в процессе реакции водой:

Следует учитывать, что при поликонденсации, в зависимости от условий проведения процесса происходит в большей или меньшей степени изомеризация цис-изомерных малеинатных звеньев в более устойчивые транс-изомерные фумаратные звенья, содержание которых в конечном продукте определяет многие его свойства (твердость, теплостойкость н др.). Посуществу, при использовании в поликонденсации в качестве кислотного агента малеиновой кислоты получаются полиэфиры, представляющие собой разнозвенные полимеры, которые явля­ются сополимерами малеиновой и фумаровой кислот. Степень превращения зависит как от природы гликоля, так и от условий поликонденсации и может достигать 70—90%.

Для облегчения удаления воды реакционную массу перемешивают, а в конце реакции нагревают в- вакууме. Чтобы ускорить процесс, иногда используют катализаторы (соли металлов; минеральные и органические кислоты, например n-толуолсулъфокислоту, и др.).

Скорость поликонденсации зависит от состава исходных веществ. В реакциях малеинового ангидрида с различными гликолями активность гликолей возрастает в последовательности 1,2-пропиленгликоль < диэтиленгликоль < этилентликоль в среднем продолжительность поликонденсации в зависимости от природы исходных мономеров и условий проведения процесса составляет 6—20 ч, кислотное число получаемого полимера равно; 25—45 мг КОН/г полимера. Молекулярную массу полим-ера можно регулировать введением на определенной стадии процесса в реакционную смесь монокарбоновых кислот или одноатомных спиртов (например, уксусный ангидрид, циклогсксанол). В ряде случаев такая добавка улучшает последующую совместимость ненасыщенного полиэфира с мономером. Синтез ненасыщенных полиэфиров обычно осуществляют в аппаратах из нержавеющей стали или эмалированных. Технологическая схема производства аналогична  получению других полиэфиров

2.2.1. Свойства полиэфирной смолы ПН – 1

Ниже приведены некоторые показатели свойств отвержденного прлиэфира марки 1ВД-1:

Плотность при 20оС, кг/м8.........………………………………………………………………............1210—1250

Разрушающее напряжение при изгибе, МПа. ……………………………………………………… 70—100

Модуль упругости при изгибе, МШ ………………………………………………………………... 2200—2800

Ударная вязкость, кДж/м2……………………………………………………………………………... 6—12

Твердость по Бриннелю,   МН/м2..........................................................................................................140—180

Теплостойкость по Вика, °С................………………………………………………………………...85—120

Удельное объемное электрическое сопротивление, Ом-м . ………………………………………..1 1О12—5 1018

Диэлектрическая проницаемость при 10е Гц..... ……………………………………………………..4,4—5,2

Электрическая прочность,  кВ/мн.........………………………………………………………………. 13—19

Практический интерес представляют и азотсодержащие ненасыщенные полиэфиры на основе малеинового ангидрида, модифицирующей дикарбоновой кислоты (фталевого ангидрида, адипиновой кислоты и др.), гликоля обычного типа (этиленгликоль, диэтиленгликоль) и двухатомного спирта, содержащего в своем составе третичный азот, в частности, N - фенил-бис(β-окси-этил) амина. Наличие в реакционной смеси такого азотсодержащего двухатомного спирта позволяет сократить продолжительность поликонденсацин в производственных условиях в 1,5— 2 раза и тем самым увеличить производительность установки по синтезу ненасыщенных полиэфиров на 30—40%. Такие азотсодержащие ненасыщенные полиэфиры отличаются повышенной совместимостью со стиролом, легче отверждаются, а отвержденные продукты характеризуются высокими физико-механическими показателями.

2.3. Методика исследования.

Первый этап исследования состоит из выбора наполнителей инициаторов ускорителей и приготовления нескольких пробных смесей на их основе.

Для изучения кинетики полимеризации имеет смысл использовать следующие доступные инициаторы радикальной полимеризации: перекись бензоила, перекись дикумила, перекись метил-этил кетона. Ускорители для них диметиланилин, соли кобальта, нафтэлат кобальта, соответственно. Планируется изучить кинетику полимеризации стирола и полиэфира ПН – 1 в присутствии данных инициаторов. Также следует оценить цвет полученных полимеров и их пригодность для приготовления шпатлёвочной пасты. Изучить влияние наполнителя на кинетику процесса и некоторые другие закономерности.


3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ.

3.1. Методы получения образцов и анализ полученных результатов.

3.1.1 Изучение кинетики полимеризации.

Таблица 3.1 Состав смесей

Инициатор/

ускоритель

Инициатор/ускоритель/Полиэфирная смола ПН 1 Инициатор/ускоритель/Стирол
Перекись бензоила/диметил анилин 1%/1%/98% 2%/2%/96%
Метил этил кетон/нафтэнат кобальта 1%/1%/98% 2%/2%/96%

Перекись дикумила/Co+2

1%/1%/98% 2%/2%/96%

Таблица 3.1 Лучшие результаты полимеризации

Инициатор/

ускоритель

Полиэфирная смола ПН 1 Стирол
Перекись бензоила/диметил анилин 5 мин Произошло разогревание 36 ч Масса Сильно пожелтела
Метил этил кетон/нафтэнат кобальта 10 мин Масса потемнела 156 ч Цвет изменился слабо

Перекись дикумила/Co+2

30 мин Масса потемнела 125 ч Цвет почти не изменился

Как видно из экспериментальных данных полимеризация стирола при комнатной температуре проходит крайне медленно и как связующее для шпатлёвки он не годится. Лучшим выбором являются композиции на основе полиэфиров.

3.1.2 Состав 1

Первый этап получения шпатлёвки: добавляем наполнитель,
тиксотропную добавку полиэфирную смолу и ускоритель, тщательно перемешиваем кашицу в стакане. В качестве наполнителя используется ZnO2, тиксотропная добавка – кизельгур, ускоритель – диметил анилин, полиэфирная смола – ПН – 1.

Отвердитель готовят по следующей методике: инициатор (перекись бензоиза) растворяют в бензоле до насыщения.

К шпатлёвке добавляют отвердитель, перемешивают смесь, с помощью шпателя намазывают на образцы царапин на УПС.

Через час можем из визуального наблюдения был сделан вывод, что образцы с большим содержанием полиэфира уже затвердели.

Рецептура клея – шпатлевки представлена в таблице 2.4.

Таблица 2.4  Рецептура клея – шпатлевки на основе ПН – 1

Ингредиент Состав шпатлевки, %.
1 2 3 4 5
1 Шпатлёвка 95%

ZnO2

23% 33% 43% 53% 63%
Полиэфирная смола ПН 1 70% 60% 50% 40% 30%
Кизельгур 5% 5% 5% 5% 5%
Диметил анилин 2% 2% 2% 2% 2%
2 Отвердитель 5%
Растворитель ПБ 80% 80% 80% 80% 80%
Перекись бензоила 20% 20% 20% 20% 20%

Было визуально обнаружено, что некоторые образцы слоя шпатлёвки обладает малой усадкой, достаточно хорошей адгезией, хорошей твёрдостью, низкой склонностью к растрескиванию.

Замечено также, что при отверждении полиэфира перекисью бензоила/диметил анилином происходит сильное пожелтение, которое невозможно устранить подкрашиванием органическими красителями.

Были определены следующие закономерности:

ü С измененнием концентрации инициатора в отвердителе или самого отвердителя скорость отверждения удавалось сильно изменять.

ü Добавление стирола к шпатлёвке в разных концентрациях приводило к улучшению смачивания поверхности УПС но уменьшению твёрдости покрытия.

ü Добавление болше чем 2% - ов диметиланилина окрашивало шпат в жёлтый цвет в то время как, смола ПН – 1 не влияла на цвет.

ü Попытка добавить раствор УПС к шпатлёвке чтобы изменить её цвет приводила к расслаиванию композиции и слоевому отверждению.

ü Цвет шпатлёвки не удаётся выравнять органическими красителями.

3.1.3 Состав 2

Первый этап получения шпатлёвки: добавляем наполнитель получения шпатлёвки: добавляем наполнитель, тиксотропную добавку полиэфирную смолу и ускоритель, тщательно перемешиваем кашицу в стакане. В качестве наполнителя используется ZnO2, тиксотропная добавка – кизельгур, ускоритель – нафтэнат кобальта, полиэфирная смола – ПН – 1.

Отвердитель перекись метилэтил кетона.

К шпатлёвке добавляют отвердитель, перемешивают смесь, с помощью шпателя намазывают на образцы царапин на УПС.

Через 70 минут образцы затвердевают.

Рецептура клея – шпатлевки представлена в таблице 2.4.

Таблица 2.4 Рецептура клея – шпатлевки на основе ПН – 1

Ингредиент Состав шпатлевки, %.
1 2 3 4 5 6
Компонент 1 Шпатлёвка 99% Шпатлёвка 98%

ZnO2

30% 40% 50% 30% 40% 50%
Полиэфирная смола ПН 1 63% 53% 43% 63% 53% 43%
Кизельгур 5% 5% 5% 5% 5% 5%
0.3% раствор нафтэната кобальта 1% 1% 1% 1% 1% 1%
Компонент 2 Отвердитель 1% Отвердитель 2%
Метил этил кетона перекись 100% 100% 100% 100% 100% 100%

Было визуально обнаружено, что образцы слоя шпатлёвки обладают малой усадкой, достаточно хорошей адгезией, хорошей твёрдостью, низкой склонностью к растрескиванию.

Так как изначально для шпатлёвки брались компоненты цветом отличные от изделий из ПС, были проведены эксперименты по добавлению органических красителей с целью выравнивания оттенков. Из визуальных наблюдений можно сделать вывод, что удалось получить хорошее окрашивание. Шпатлёвка подаётся окраске.

Были определены следующие закономерности:

ü С увеличением концентрации отвердителя скорость отверждения удавалось сильно увеличивать.

ü Добавление стирола к шпатлёвке в разных концентрациях приводило к улучшению смачивания поверхности УПС но уменьшению твёрдости покрытия.

ü Попытка добавить раствор УПС к шпатлёвке чтобы изменить её цвет приводила к расслаиванию композиции и слоевому отверждению.

ü Варьировать твёрдость и способность композиции к отверждению имеет смысл изменяя концентрацию окиси цинка.

ü Шпатлёвка подаётся окраске органическими красителями.

ü Скорость отверждения сильно снижается при наличии в полиэфире или ZnO2 влаги

3.1.4 Состав 3

Приготовим для анализа три композиции составом указанным в таблице 2.5

Первый этап получения шпатлёвки: растворяем в стироле стружку из УПС, добавляем к раствору полиэфирную смолу, ускоритель, кизельгур, окись цинка тщательно перемешиваем кашицу в стакане. В качестве ускорителя – нафтэнат кобальта, полиэфирная смола – ПН – 1.

Отвердитель перекись метилэтил кетона.

К шпатлёвке добавляют отвердитель, перемешивают смесь, с помощью шпателя намазывают на образцы царапин на УПС.

Через 70 минут образцы затвердевают.

Рецептура клея – шпатлевки представлена в таблице 2.5.

Таблица 2.4 Рецептура клея – шпатлевки на основе ПН – 1

Ингредиент Состав шпатлевки, %.
1 2 3
Компонент 1 Шпатлёвка 99%

ZnO2

0% 10% 20%
Раствор УПС/стирол – 3/1 44% 34% 24%
Полиэфирная смола ПН 1 50% 50% 50%
Кизельгур 5% 5% 5%
0.3% раствор нафтэната кобальта 1% 1% 1%
Компонент 2 Отвердитель 1%
Метил этил кетона перекись 100% 100% 100%

Были сделаны следующие наблюдения:

ü Шпатлёвка с течением времени расслаивалась на две фазы: раствор полиэфира в стироле и раствор УПС в стироле.

ü Окись цинка отбеливает композицию, придавая слоям её матовость, хотя лист УПС голубоватый со слабо заметным глянцем на поверхности.

ü При малой концентрации ZnO2 цвет шпат имеет такой же как и полиэфирная смола (розовый), следовательно, приготовить композицию на основе данных ингредиентов не удастся

3.1.5 Состав 4

Приготовим для анализа композиции составом указанным в таблице 2.6.

Первый этап получения шпатлёвки: растворяем парафин в полиэфирной смоле, добавляем ускоритель, кизельгур, окись цинка тщательно перемешиваем кашицу в стакане. В качестве ускорителя – нафтэнат кобальта, полиэфирная смола – ПН – 1.

Отвердитель перекись метилэтил кетона.

К шпатлёвке добавляют отвердитель, перемешивают смесь, с помощью шпателя намазывают на образцы царапин на УПС.

Через 70 минут образцы затвердевают.

Рецептура клея – шпатлевки представлена в таблице 2.6.

Таблица 2.4 Рецептура клея – шпатлевки на основе ПН – 1

Ингредиент Состав шпатлевки, %.
1 2 3 4 5 6
Компонент 1 Шпатлёвка 99%

ZnO2

25% 15% 5% 25% 15% 5%
Белый парафин 20% 30% 40% 30% 40% 50%
Полиэфирная смола ПН 1 50% 50% 50% 40% 40% 40%
Кизельгур 4% 4% 4% 4% 4% 4%
0.3% раствор нафтэната кобальта 1% 1% 1% 1% 1% 1%
Компонент 2 Отвердитель 1%
Метил этил кетона перекись 100% 100% 100% 100% 100% 100%

Было визуально обнаружено, что образцы слоя шпатлёвки обладают малой усадкой, достаточно хорошей адгезией, хорошей твёрдостью, низкой склонностью к растрескиванию.

Так как изначально для шпатлёвки брались компоненты цветом отличные от изделий из УПС, были проведены эксперименты по добавлению органических красителей с целью выравнивания оттенков. Из визуальных наблюдений можно сделать вывод, что удалось получить хорошее окрашивание. Шпатлёвка подаётся окраске.

Были определены следующие закономерности:

ü С увеличением концентрации отвердителя скорость отверждения удавалось сильно увеличивать.

ü Варьировать твёрдость и способность композиции к отверждению имеет смысл, изменяя концентрацию парафина

ü Шпатлёвка подаётся окраске органическими красителями.

ü Парафин придал шпатлёвке оптические качества листа УПС.

ü  Парафин снижает твёрдость отверженного полиэфира

ü  Парафин ограничено растворяется в смоле ПН-1.

ü  Композиции, имеющие большое содержание парафина с трудом намазываются на поверхность листа.

ü Для придания цвета в шпат можно добавлять органические красители

Приблизительный химический состав шпатлёвки для листа из УПС приведен в заключении.


4. ЗАКЛЮЧЕНИЕ

         В результате исследований был опредёлён оптимальный химический состав композиции для шпаклевания листа из ударопрочного полистирола и АВС. Рекомендуемые соотношения реагентов приведены в таблице 4.1

Таблица 4.1

Рецептура клея – шпатлевки на основе ПН – 1

Ингредиент Содержание %.

Шпатлёвка 99%

ZnO2

10%
Белый парафин 40%
Полиэфирная смола ПН 1 45%
Раствор нафтэната кобальта 0.3% 1%
Кизельгур 4.9%
Краситель 0.1%

Отвердитель 1%

Перекись метилэтилкетона 100%

Если требуется увеличить скорость отверждения рекомендуется увеличить количество добавляемого отвердителя в два раза. При низкой вязкости шпата допустимо увеличение концентрации ZnO2 . Для снижения твёрдости рекомендовано увеличить концентрацию парафина.


СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Николаев А. Ф. Технология пластических масс. Л., Химия, 1977, с. 238-261

2. «Технология пластических масс»:Под редакцией академика В.В. Коршака.-Москва:Химия, 1985-559с.

3. Коршак В. В. Разнозвенность полимеров. М., Наука, 1977. 301 с.

4. Бёниг Г. В. Ненасыщенные полиэфиры. Пер. с англ./Под ред. Л. Г. Седова. М., Химия, 1968. 254 с

5. Коршак В. В. Термостойкие полимеры. М., Наука, 1969. 416 с


Страницы: 1, 2, 3