рефераты

рефераты

 
 
рефераты рефераты

Меню

Реферат: Синергетика и системный синтез рефераты

Энтузиасты этих подходов не видели ни пределов, ни ограничений. Одному из авторов довелось слышать по этому поводу на научном семинаре такой диалог.

-А есть ли задачи, к которым такой подход неприменим? - спросил потрясенный открывшимися перспективами слушатель,

- Может быть и есть, но я ни одной такой не знаю, - с гордостью и уверенностью ответствовал докладчик.

Но пределы обнаружились. И довольно быстро. Во-первых, принципиальные, объективные, независимые от человека, В теории динамического хаоса - важной области нелинейной науки- было убедительно показано, что даже для довольно простых детерминированных систем (в которых будущее однозначно определяется настоящим) существует горизонт прогноза. Заглянуть за этот горизонт в общем случае нельзя, какую бы мощную вычислительную технику и какие бы эффективные алгоритмы исследователи ни использовали. Сейчас теория само организованной критичности - новый фаворит синергетики - показывает, что для многих сложных иерархических систем типичны редкие катастрофические события. Поэтому "настроить" модели - определить необходимые параметры, - опираясь на предысторию, для таких объектов достаточно сложно.

И все же, как нам кажется, главным барьером, вставшим на пути многих вдохновляющих проектов, связанных с компьютерным моделированием, стало чисто человеческое ограничение. Это ограничение условно можно назвать "барьером понимания". Оказалось, что наши возможности вычислять, моделировать, управлять, имитировать то, что мы не понимаем, весьма ограниченны. Многие надежды, которые сегодня возлагаются на синергетику, связаны прежде всего с теми задачами, которые лежат вблизи "барьера понимания", с новым взглядом на них.

Системный синтез

Существо дела можно пояснить на примере концептуальной модели, возникшей вначале в совершенно конкретном контексте. Зададим общий вопрос - почему нам что-то удается описывать и предсказывать? В самом деле, человек "с технической точки зрения" сильно проигрывает ЭВМ, Скорость срабатывания нервных клеток - нейронов - у него в миллион раз меньше, чем у триггеров в персональном компьютере. Информация передается в нервной системе тоже в миллион раз медленнее, чем в вычислительной машине, поскольку связана и с электрическими, и с химическими процессами. Да и "выходные параметры" у человека достаточно скромные. По данным психологов, он может следить не более чем за семью непрерывно меняющимися во времени величинами, эффективно работать не более чем с 5-7 людьми. Вместе с тем многие задачи человек решает гораздо лучше компьютеров. Можно только удивляться тому, что понадобилось почти полвека интенсивного развития вычислительной техники, чтобы машины начали уверенно обыгрывать людей в шахматы.

Это означает, что наше мышление, восприятие, способность предвидеть опираются на иные, "некомпьютерные" алгоритмы. В отношении их была высказана следующая гипотеза. Рассмотрим фазовое пространство, в котором лежат переменные, описывающие нашу реальность. Оно очень велико, и принять во внимание все переменные в нем человек не в силах. Но, очевидно, есть ситуации, области в фазовом пространстве, где, для того чтобы понимать и предсказывать происходящее, достаточно несколько параметров. Другими словами, иногда существуют проекции на подпространство меньшего числа переменных, которые адекватно отражают происходящее во всем огромном пространстве переменных. Эти подпространства были названы руслами.

Размерность русла (то есть число переменных в этой проекции реальности) невелико. Психологи говорят о семи переменных, но наш читатель знает, что вообразить себе нетривиальный четырехмерный объект уже непросто.

И если у нас для описания реальности есть подходящее русло, то тут можно строить достаточно простые и эффективные теории, понимать происходящее, просчитывать варианты, находить эффективные поведенческие стратегии. В синергетике эти наиболее важные переменные, характеризующие русло, называют параметрами порядка.

Синергетика решила множество задач, в которых понято, каковы эти параметры для различных физических, химических или биологических систем, как искать связи между этими параметрами, как "на пальцах" пояснить происходящее, не выписывая каких-либо уравнений. Как ищут русла живые системы, как научить этому нейронные сети - это, на наш взгляд, фундаментальная задача нейронауки. (Нейронаукой все чаще называют междисциплинарный подход, родившийся на стыке когнитивной психологии, нейробиологии, вычислительной математики, теории рефлексивного управления, нейрофизиологии, других дисциплин, направленный на выявление механизмов работы мозга, моделирование элементов мышления, объяснение феномена сознания.)

Другими словами, там, где дело касается русел, сложные системы удается описывать просто. И тут синергетика имеет и методы, и подходы, и успехи, и образцы для подражания.

Но реальность может быть устроена и более сложно, с чем мы регулярно сталкиваемся. Русло кончается (определить когда это происходит - отдельная важная задача), и число переменных, которые определяют ход процесса, быстро растет, горизонт прогноза уменьшается, мы не можем "просчитать ситуацию", появляется возможность резких изменений.

Такие области в фазовом пространстве были названы областями джокеров, а сами правила, по которым начинает вести себя система, - джокерами. Название связано с игральной картой - джокером, которая, в зависимости от желания играющего, может стать любой другой картой. Наличие джокера в колоде намного увеличивает неопределенность и усложняет ситуацию.

В задачах, построенных на материале естественных наук, джокеры могут быть связаны с тем, что в этой области фазового пространства определяющими становятся "быстрые переменные", в то время как русла определялись медленными. Джокер может быть связан с точкой бифуркации, когда малые флуктуации, случайный шум могут определить ход процесса. Области джокера удобно выделять, рассматривая некоторые типы перемежаемости (например "переключательная перемежаемость" on-off intermittency, для которой С.В. Ершовым была построена замечательная модель в связи с описанием жесткой турбулентности). Одним словом, в моделях естествознания есть много места для джокеров. При этом нам приходится, как правило, менять тип описания - то прибегать к вероятностному языку, то строить асимптотики, существенно отличающиеся от тех, что характерны для русел, то каким-то способом учитывать влияние других уровней организации материи.

Но еще более важны и интересны джокеры в тех ситуациях, когда речь идет об обществе, об истории, экономике, политике или о человеке. В области русла можно опираться на простые Детерминированные модели, на несложные закономерности. Те, кто сталкивался с экономикой, помнят, насколько просты модели, построенные большинством Нобелевских лауреатов в этой области. Тут дело, по-видимому, не в самих моделях, а тех руслах, к которым они относятся и которые смогли увидеть исследователи. И тут все похоже на "физику" и "технику". Заметьте, как часто политики говорят об "экономических механизмах" и "социальных технологиях".

Совершенно иначе приходится описывать реальность в области джокера. Огромное влияние приобретают случайности, игровые моменты, сплошь и рядом становится необходимым вероятностное описание. Выбор в таких случаях сложен, потому что приходится принимать в расчет слишком многое, что оставляет простор для субъективных факторов.

При этом в критических ситуациях факторами, упорядочивающими реальность, оказываются такие плохо поддающиеся формализации сущности, как мораль, убеждения, нравственность, предшествующий опыт. При этом, в отличие от моделей точных наук, здесь многие величины могут меняться скачком. Это уровень доверия, ожидания, связываемых с будущим. В теории рефлексивного управления это было осознано давно. Однако последние десятилетия обогатили теорию разнообразной практикой. В качестве примера можно привести технологии "организованного хаоса" - одни из самых эффективных методов финансовых спекуляций, по мнению упоминавшегося Дж. Сороса, которому в этом вопросе явно можно доверять.

В самом деле, тот, кто осознал, что система уже находится в области джокера, получает большую фору перед теми, кто еще думает, что "все идет нормально". Здесь и "стратегии с потерей непрерывности", которые все чаще применяются в международной жизни, когда абсурдные, нелогичные, не вытекающие из всего прошлого акции одних стран могут радикально изменить ситуацию и помочь им добиться своей цели малой ценой.

Психологи называют это "эффектом Беттельхейма" - человек пытается увидеть логику противной стороны, как-то объяснить с разумных позиций происходящее, в то время как оно заведомо абсурдно и алогично. В представления теории русел и джокеров прекрасно укладываются PR-технологии, как их красиво называют журналисты, или технологии манипулирования сознанием, как их именуют социологи. Суть дела прекрасно показана в американском фильме "Хвост виляет собакой", где для того чтобы замять скандал с правящим президентом, за несколько дней до новых президентских выборов нужно устроить имитацию маленькой победоносной войны. При этом совершенно неважно, что происходит на самом деле, важно лишь то, что увидят телезрители, которым предстоит голосовать. Чтобы заставить людей поступать вопреки своим достаточно очевидным интересам, нужно перевести их в "область джокера", дезориентировать, хотя бы временно, в том, что касается смыслов, ценностей, предпочтений, ожиданий.

На какое-то время вместо одного русла, со своими параметрами порядка, в сознании возникает другое, именно то, на которое рассчитывают манипуляторы. Не надо объяснять читателю, насколько это важно, какой большой практический опыт здесь накоплен. Многие специалисты считают этот способ воздействия на общество информационным управлением - главным в постиндустриальную эпоху.

И отечественные, и зарубежные синергетики не раз писали, что здесь представления теории самоорганизации могут оказаться исключительно важными. И мы с ними совершенно согласны. Собирались конференции, публиковались статьи, выдвигались исследовательские программы. И авторы этих строк, признаемся честно, не раз ко всему этому прикладывали руку. И все же следует признать, что здесь пока не хватает ни понимания, ни интересных моделей. Но мы надеемся, что у синергетики еще многое впереди.

И вновь вернемся к началу этого раздела. А что, собственно, надо, чего не хватает? Да только одного по большому счету. И для понимания процессов и явлений, и для управления надо уметь выделять небольшое число параметров, определяющих их ход, и выявлять взаимосвязи между ними. Нужен системный синтез.

В самом деле, накопленный запас знаний и достигнутый современной наукой уровень позволяют сплошь и рядом выявлять детали, тонкости и частности, находясь в пределах любой научной дисциплины. Происходит анализ - расщепление, расчленение в изначальном смысле слова. И даже системный анализ - это тоже выделение отдельных свойств и качеств. Это все-таки анализ.

В то же время нам, чтобы понять, что следует делать, нужно системное, целостное представление об объекте. Такова уж наша человеческая природа - мы не умеем активно оперировать сколько-нибудь большим числом переменных и взаимосвязей. При этом мы осознаем, что в разных ситуациях этот набор переменных будет разным (мы можем оказываться в пределах различных русел). Более того, в области джокера начинают в полную силу играть принципы, мораль, опыт и просто везение, и компьютер может тут нам помочь весьма немногим.

Является ли системный синтез чем-то принципиально новым или это всего лишь удачное слово для того, чем все всегда занимались? И да, и нет. К сожалению, такой ответ можно дать по поводу почти любой крупной научной идеи или программы. (Точно так же нелегко сказать, является ли дом чем-то принципиально новым по сравнению с фундаментом.)

Да - потому что в науке за время ее существования накоплен огромный опыт упрощения и выделения главного. В математике - это огромный арсенал методов осреднения и других асимптотических подходов. В экономике это разнообразные методы агрегирования (о чем бы писали экономические журналы и спорили бы политики, не будь у нас огромного набора замечательных макроэкономических индексов?). Не будь конструкторских, инженерных, во многом интуитивных способов синтеза, сколько-нибудь сложных технических конструкций создать бы не удалось. Громадный опыт сложного многоуровневого синтеза накоплен в программировании. Благодаря такому синтезу создавались и совершенствовались различные организации. Этот список можно продолжить.

Нет - потому что синергетика помогла подойти к системному синтезу как к одной из важнейших черт живых систем, нашего сознания. Она поставила вопрос - как происходит этот важнейший процесс самоорганизации в пространстве признаков, возможностей, степеней свободы? Чудо, пока не доступное компьютерам, состоит в том, что человек может почувствовать или осознать, "нравится" ему что-то или нет. По-видимому, интересно было бы понять, существуют ли универсальные методы системного синтеза, "подсмотреть" их у природы и далее использовать в компьютерных системах.

Синергетика уже научилась в простых ситуациях выделять параметры порядка и искать "русла" и учится сейчас работать с джокерами, с механизмами перехода от одних русел к другим. Готовых универсальных рецептов тут пока нет и их надо искать.

Где нужен системный синтез? Таких задач очень много, и мы приведем только несколько очевидных примеров, показывающих важность этого подхода.

Первый пример можно назвать выбором стратегии. Сейчас очень популярна концепция устойчивого развития. Ее можно провозглашать, говорить о ней общие слова, чем мировое сообщество и наш истеблишмент давно и с удовольствием занимаются. Но, как выразился один известный экономист, "экономика букв не знает и читать не умеет". Что в экономике-то надо делать? В социальной сфере? В научной и технологической политике?

Человек - замечательное существо, умеющее оперировать нечеткими, размытыми множествами. Но иногда в социальных системах это приводит к плачевным результатам. Достаточно вспомнить недоброй памяти горбачевщину, "перестройку", "новое мышление". Разные социальные слои вкладывали в эти понятия свой смысл, и в конце концов верх взяли манипуляторы, обобравшие "молчаливое большинство". Страна оказалась в системном кризисе. Не хотелось, чтобы так же получилось с устойчивым развитием. А поэтому нужны конкретные ясные цели, показатели, определяющие устойчивость развития. Нужны шаги, механизмы, меры, которые экономика "понимает".

В соответствующих международных документах фигурируют сотни показателей. Что из них является параметрами порядка? При этом достаточно очевидно, что для разных стран эти показатели будут различными.

Вопрос об устойчивом развитии слишком серьезен, чтобы его решать с позиций чисто гуманитарной парадигмы. Надо учитывать особенности России, которые очень существенны, использовать возможности точных наук. Здесь существует традиция комплексного системного анализа проблем устойчивого развития, восходящая к работам академика В.А. Коптюга и его единомышленников. До уровня компьютерных моделей дело здесь не доведено, однако важные шаги в этом направлении сделаны. Статьи Д.С. Чернавского с соавторами и С.Ю. Малкова, помещенные в этой книге, на наш взгляд, создают основу для того, чтобы на конкретном математическом и экономическом языке говорить об устойчивом развитии.

Второй пример показывает, что системный синтез позволяет по-новому подходить к осмыслению накопленного опыта и построению баз знаний. Американские коллеги говорят, что между тем моментом, когда выпускник американской школы поступит в университет учиться медицине, и до того момента, когда он сможет начать работать как кардиохирург, проходит в среднем 15 лет. Помимо социальных и субъективных моментов у этого есть и объективная основа. Прежде чем приступить к работе студент должен воспринять огромный практический опыт. Преподаватели и старшие коллеги не могут ему кратко и конкретно рассказать и показать, что он должен знать и уметь. А на самом деле - что?

Естественно, накопление опыта имеет прямое отношение к системному синтезу, к своеобразной самоорганизации в пространстве знаний и навыков. Сейчас математика позволяет выявить, какими категориями и "внутренними решающими правилами" пользуется опытный врач. Как они могут измениться после консилиума и обсуждения с коллегами, каково "русло", которое сформировалось в ходе многолетней практики. Заманчиво было бы учиться быстрее и лучше и главное - тому что надо. Впрочем, и понимание механизмов системного синтеза нельзя сбрасывать со счетов.

Система координат

Нам не раз доводилось говорить и писать о том, что сверхзадачами науки в XXI веке, по-видимому, станут три задачи. И востребованность социумом различных научных дисциплин и подходов, в том числе и синергетики, будет зависеть от того, насколько полезными они окажутся в решении этих задач. Исходя из этих проблем, из этой системы координат, мы и расположили статьи в сборнике. Итак, о проблемах.

Проблемы рисков и технологий. Мы живем в технологической, в широком смысле этого слова, цивилизации. Множество проблем - от увеличения продолжительности жизни до заполнения досуга - решаются с помощью технических средств. Они настолько эффективны, что часто создают иллюзию решения задачи там, где его на самом деле нет. Типичный пример - гонка вооружений. Не раз в новейшей истории политикам, военным и ученым казалось, что следующее поколение вооружений обеспечит миру большую безопасность. Альфред Нобель полагал в начале прошлого века, что достаточно страшное оружие сделает войны невозможными. Судя по американским планам развертывания ПРО, многие и сейчас пребывают в этой иллюзии. (Другие откровенно лукавят.)

При этом, как правило, упускают из виду оборотную сторону медали. Каждое новое поколение техники, даже не обязательно военной, очень существенно меняет мир, несет свои риски, угрозы и опасности. При этом становится необходимым широкий, системный взгляд на проблему, позволяющий оценить, стоит ли игра свеч. Кроме того, синергетика может выступить здесь еще в одной роли - подсказать решения различных технологических проблем.

За последние столетия человечество пережило несколько волн нововведений, изменивших мир. Это пар, железные дороги, электричество, компьютеры. При этом каждая такая волна сопровождалась преувеличенными ожиданиями, последующими разочарованиями, кризисом огромных отраслей промышленности и получением больших выгод в тех сферах, где этого трудно было ожидать. Затем следовали аварии, катастрофы и огромная работа, направленная на то, чтобы "вписать" эту технологию в техносферу наиболее безопасным образом.

Страницы: 1, 2, 3