рефераты

рефераты

 
 
рефераты рефераты

Меню

Реферат: Серия МОНАП: модели, методы, подходы рефераты

модель обучаемого;

модель управления процессом обучения.

В МОНАП могут быть выделены два основных компонента:

сервисные авторские средства, используемые для создания базы знаний и ее поддержки;

функциональные средства, используемые для обучающего диалога и управления.

База знаний представляет собой совокупность сред обучения. Структура базы знаний представлена на рис. 1.

Каждая среда обучения, включенная в базу знаний содержит следующие знания:

знания о свойствах учебных задач (какого типа и сколько операций необходимо выполнить для решения учебного задания);

знания об обучаемом (имя, текущий шаг обучения, свойства учебного задания на следующий шаг обучения, вероятности правильного выполнения операций, вероятности гипотез об уровнях усвоения на текущий шаг);

знания об управлении процессом обучения определяемые соответствующими значениями параметров модели обучения (число гипотез об уровнях обученности, оптимальное значение трудности задания, минимальный уровень усвоения, "порог стресса" и т.д.).

Monitor

 


MONAP

Directory of Learning Environments

      

 

              

 

 


Leaning Environment

 

LEANERS Base

 

 

 

 

 

THEORY Base

Rules Base

PROPETIES Base

 

Leaning Environment

 

LEANERS Base

 

 

 

THEORY Base

Rules Base

PROPETIES Base

 


 · · ·

Interchangeable components of

ITS family information base

Subject-dependent subsystems of ITS

 


Рис. 1. Структура базы знаний

Моделирование процесса обучения

В связи с тем, что невозможно дать точные и однозначные рекомендации по параметрической настройке модели управления обучением для произвольной ПО, возникает необходимость в расширении архитектуры ИОС, а соответственно и инструментальных средств проектирования ИОС за счет включения в них подсистемы моделирования процесса обучения.


При проектировании конкретной ИОС преподаватель должен задать значения ряда параметров модели управления обучением (Рис. 2).

Рисунок 2.


Значения некоторых из указанных параметров могут существенным образом влиять на то, какая задача будет выдана обучаемому в соответствии с его состоянием обученности. Практический опыт использования МОНАП-ПЛЮС для проектирования ИОС GRAD [Galeev I. et al., 1998] показал, что задание значений указанных параметров могут вызывать затруднения у педагогов несмотря на то, что встроенные средства помощи содержат рекомендации по их выбору. Для преодоления этих затруднений педагог может использовать режим моделирования. В этом режиме (Рис. 3) предоставляется возможность задавать любые результаты решения задач.

Рисунок 3.

Педагогу наглядно представляются итоги идентификации знаний обучаемого (используется байесовский подход) в цифровой и графической формах, а также тип текущей задачи, которая будет предложена обучаемому для выполнения на следующем шаге обучения в соответствии с его состоянием обученности и заданными значениями параметров модели обучения.

Варьируя результаты решения задач и значения параметров модели, педагог может подобрать такие значения, при которых модель обучения будет управлять процессом обучения оптимально с точки зрения педагога. В режиме моделирования доступны две различные формы графического представления итогов идентификации знаний обучаемого. В числовой форме эти же данные приведены в таблице, расположенной над графиком. Первый тип графика (Рис. 3) демонстрирует вероятности правильного применения обучаемым каждой операции на заданном количестве шагов обучения, то есть графически отображает данные, находящиеся в той или иной строке таблицы. Второй тип графика демонстрирует историю изменения состояния обученности обучаемого по конкретной операции (графическое изображение того или иного столбца таблицы). Переключиться между этими двумя типами представления графической информации можно щелкнув левой клавишей мыши на соответствующем заголовке строки или столбца цифровой таблицы соответственно.

В связи с тем, что процесс обучения является многофакторным, динамическим и слабо формализуемым процессом возникает необходимость в наличие инструментов, обеспечивающих педагогу возможность проведения дидактических экспериментов с целью такой настройки, модели управления обучением в ИОС, которая позволяет учитывать конкретные условия использования. Реализованная в МОНАП подсистема моделирования отвечает указанным требованиям.

Интеллектуальная обучающая система, основанная на МОНАП

Во многих научных исследованиях показано, что CALL системы более эффективны, чем традиционный человек-учитель [Yang & Akahory, 1999]. В результате анализа предметной области обучения (грамматики немецкого языка в части склонения имен прилагательных) разработаны структуры предметно-ориентированных подсистем соответствующей экспертной обучающей системы (ИОС GRAD) [Galeev I. et al., 1999]. Подсистема модели обучения спроектирована с помощью инструментальных средств МОНАП. В соответствии с разработанной ранее архитектурой проектируемых ИОС определен состав предметно-ориентированного расширения среды обучения в ИОС GRAD и разработаны программные средства, обеспечивающие её создание и обслуживание, в том числе и возможность построения семейства ИОС в рассматриваемой ПО обучения, имеющих сетевую архитектуру, т.е. использующих общие компоненты информационных баз. Разработанная ИОС GRAD обеспечивая адаптивный процесс освоения обучаемым грамматики немецкого языка в части склонения имен прилагательных представляет собой гибкую систему открытого типа, способную расширяться и изменяться по требованиям эксперта-педагога.

Актуальность усвоения грамматики немецкого языка в части склонения имен прилагательных обусловлена тем, что знания о прилагательном используются как при синтезе, так и при анализе немецкого предложения. В случае синтеза предложения основной задачей при изучении прилагательного является правильное определение его окончания. В случае анализа (понимания) немецкого предложения знания о прилагательном могут играть важнейшую роль при решении целого ряда задач анализа:

распознавание подлежащего;

различение числа;

распознавание распространенного предложения и т.д.

Таким образом, решая задачи синтеза, обучаемый приобретает знания, которые могут быть использованы и при решении задач анализа немецкого предложения. В связи с этим целесообразно проектирование ИОС GRAD (GR -Grammatik, AD - Adjektiv), в которой учебным заданием является набор предложений немецкого языка, содержащих основы прилагательных. Обучаемому необходимо правильно проставить требуемые окончания. Фрагмент учебного задания может выглядеть следующим образом:

Das klein... Kind trinkt warm... Milch.

На основе анализа морфологии прилагательного, а также учитывая результаты анализа морфологии определяемого существительного и артикля, сформулирован общий подход к формированию алгоритмических предписаний по определению окончаний прилагательных в виде набора правил (операций) типа: "ЕСЛИ (условие), ТО (действие)". Указанные предписания представляют собой реализации внешней формы представления знаний эксперта-педагога о грамматике немецкого языка в части склонения имен прилагательных. Очевидно, что может быть сформирован целый класс таких алгоритмических предписаний на ЕЯ. При этом алгоритмические предписания указанного класса могут существенно отличаться друг от друга. Возможны следующие основные различия:

по типам выделенных операций, входящих в алгоритмическое предписание;

по степени детализации выделенных операций, входящих в алгоритмическое предписание;

по указанной экспертом-педагогом последовательности выделенных операций;

по естественно-языковой форме представления алгоритмического предписания, обусловленного как многозначностью, так и синонимичностью ЕЯ.

В качестве примера, иллюстрирующего потенциальное многообразие алгоритмических предписаний в рассматриваемой ПО обучения можно привести ряд операций, описывающих то или иное подмножество правил склонения прилагательных в слабой форме:

ЕСЛИ перед прилагательным и существительным стоит определенный артикль der или одно из местоимений dieser, jener, solcher, jeder, welcher и определяемое существительное мужского рода, ТО окончанием прилагательного является -е;

ЕСЛИ перед прилагательным и существительным стоит определенный артикль der и определяемое существительное мужского рода, ТО окончанием прилагательного является -е;

В рамках сформулированного общего подхода разработано конкретное алгоритмическое предписание, для хранения которого используется файл «ПРАВИЛА». Эксперт-педагог может разработать свое, отличное от предложенного, алгоритмическое предписание, адекватно (как по естественно-языковой форме представления, так и по содержанию) отображающее его знания в анализируемой предметной области (ПО) обучения. Программные средства ИОС GRAD поддерживают такую возможность.

Определены следующие структуры предметно-ориентированных подсистем ИОС GRAD.

Подсистема формирования учебных заданий представляет собой совокупность банка учебных задач со средствами его создания и обслуживания, а также соответствующей программы, обеспечивающей предъявление обучаемому задачи, свойства которой определяются подсистемой модели обучения в соответствии с текущими знаниями обучаемого.

Подсистема решателя задач отсутствует в связи с отказом от построения генератора задач.

Подсистема диагностики обеспечивает:

ввод ответа обучаемого;

анализ ответа обучаемого;

выдачу диагностических сообщений;

представление помощи обучаемому;

определение типов и количества допущенных ошибок;

формирование обратной связи и возврат управления.

Подсистема объяснений представляет собой расширение подсистемы диагностики за счет включения в ее структуру файла «ПРАВИЛА», используемого для формирования ответов обучаемому на его вопрос “ПОЧЕМУ?”. Ответ формируется в естественно-языковой форме в виде “ЕСЛИ..., ТО...”.

Разработаны программные средства, обеспечивающие создание и обслуживание предметно-ориентированного расширения среды обучения ИОС GRAD. Указанные программные средства поддерживают уровень “открытости” ИОС, задаваемый инструментальными средствами проектирования МОНАП-ПЛЮС. Разработан предметно-ориентированный компонент учебного диалога, осуществляемый соответствующими предметно-ориентированными подсистемами ИОС GRAD при выполнении их основных функций. Кроме того, в процессе указанного диалога предусматривается анализ логической целостности (полноты и непротиворечивости) информационной базы ИОС GRAD, сопровождаемый выдачей аварийных сообщений в адрес эксперта-педагога в случаях ее нарушения.

ИОС GRAD, обеспечивая адаптивный процесс усвоения обучаемым грамматики немецкого языка в части склонения имен прилагательных, представляет собой гибкую систему открытого типа способную расширяться и изменяться по требованиям эксперта-педагога. Используя предоставляемые ему программные средства, эксперт-педагог может:

изменить существующую (поставляемую) ИОС;

построить набор независимых и существенно отличных друг от друга ИОС в рассматриваемой ПО обучения для различных категорий обучаемых;

построить семейство ИОС в рассматриваемой ПО обучения, имеющих сетевую архитектуру, то есть использующих общие компоненты информационных баз.

Дискуссия и выводы

В настоящее время, ведутся работы по созданию CALL системы по русскому языку в части склонения имени прилагательного посредством МОНАП. В будущем планируется апробировать предложенный подход в других ПО.

Общеизвестны преимущества Web-based интеллектуальных обучающих систем. Многие из существующих ОАС (обучающая адаптивная система) в Web, например, ELM-ART, CALAT, WITS и Belvedere, были разработаны на базе более ранних ИОС [Brusilovsky P., 1998]. В известных нам АОС в Web авторские средства проектирования курсов доступны только непосредственно на сервере разработчика системы. Это сильно сужает круг экспертов-педагогов, имеющих возможность создания своих авторских курсов в этих системах, что влечет за собой ограничение количества создаваемых курсов. Поэтому, одной из основных задач новых версий MONAP является разработка и реализация инструментальных средств проектирования сред обучения с помощь которых педагог с удаленного компьютера, подключенного к Internet, сможет создавать свои среды обучения. В результате появляется возможность множеству педагогов в одной ПО строить множество сред обучения с различными дидактическими характеристиками. Таким образом, система превращается в удобный инструмент для постановки широкомасштабных педагогических экспериментов и сбора большого количества полезной статистической информации, что расширяет ее возможности и в итоге увеличивает ценность для обучаемых.

Список литературы

 [Conati C. & VanLehn K., 1996] Conati, C. & VanLehn, K., POLA: A student modeling framework for probabilistic on-line assessment of problem solving performance. In Proceedings of UM-96, Fifth International Conference on User Modeling. Kailua-Kona, HI: User Modeling Inc.

[Galeev I. et al., 1996] Galeev, I., Ivanov, V., Akhmadullin, M. A Learning Model in MONAP // Human-Computer Interaction. The 6th International Conference. EWHCI'96. Moscow, Russia, August 12-16, 1996. - P.320-323.

[Kinshuk & Patel, 1997] Kinshuk, Patel, A. “A Conceptual Framework for Internet based Intelligent Tutoring Systems” Knowledge Transfer, volume II, Ed. A. Behrooz, pAce, London, 1997, pp. 117-124

[Galeev I. et al., 1998] Galeev, I., Ivanov, V., Akhmadullin, M. The experience of development of intelligent tutoring systems, in proceeding of 27th International symposium "Ingenieurpädagogik'98”, Volume 2 "Padägogische Probleme in der Ingenieurausbildung" - pp. 255-258, Moscow, 1998.

[Brusilovsky P., 1998] Brusilovsky, P. Adaptive Educational Systems on the World-Wide-Web: A Review of Available Technologies, in proceedings of 4th International Conference on Intelligent Tutoring Systems (ITS'98), San Antonio, 1998.

[Gertner A. et al., 1998] Gertner, A., Conati, C., and VanLehn, K. Procedural help in Andes: Generating hints using a Bayesian network student model. In: Proceedings of the Fifteenth National Conference on Artificial Intelligence AAAI-98. Cambridge, MA: The MIT Press. pp.106-111

[Yang & Akahory, 1999] Yang, J. Ch., Akahory, K. An Evaluation of Japanese CALL Systems on the WWW Comparing a Freely Input Approach with Multiple Selection // Computer Assisted Languages Learning, 1999, Vol. 12, No. 1, pp. 59-79

[Galeev I., 1999] Galeev, I. “Automation of the ITS Design” Educational Technology journal, V. XXXIX, No. 5, September-October 1999, pp. 11-15.

[Galeev I. et al., 1999] Galeev, I., Tararina, L., Sosnovsky, S. “The structure and functions of ITS GRAD”, Proceedings of 8th International conference on Human-Computer Interaction (HCI’99) Volume 2 Munich, Germany, Lawrence Erlbaum Associate, Publishers, London, 22 – 26 of August, 1999, pp.682-685.


Страницы: 1, 2