рефераты

рефераты

 
 
рефераты рефераты

Меню

Реферат: Микроэлектроника и функциональная электроника (разработка топологии ИМС) рефераты

9 - проведение разделительной диффузии и создание изолированных кар­манов;

Разделительная диффузия проводится в две стадии: первая (загонка) -при температуре 1100-1150 °С, вторая (разгонка) - при температуре 1200-1250 °С. В качестве диффузанта используется бор. Разделительная диффузия осуществляется на всю глубину эпитаксиального слоя; при этом в подложке кремния формируются отдельные области полупроводника разделенные р-n переходами. В каждой изолированной области в результате по­следующих технологических операций формируется интегральный элемент.

10 -окисление;

11 - фотолитография для вскрытия окон под базовую диффузию;

12 - формирование базового слоя диффузией примеси р-типа.

Для проведения базовой диффузии процессы очистки поверхности, окисления и фотолитографии повторяются, после чего проводится двухста­дийная диффузия бора: первая при температуре 950-1000 °С, вторая при температуре 1150-1200 °С.

13 -окисление;

14 - фотолитография для вскрытия окон под эмиттерную диффузию;

15 - формирование эмиттерного слоя диффузией примеси n-типа;

Эмиттерные области формируются после четвертой фотолитографии Эмиттерная диффузия проводится в одну стадию при температуре около 1050 °С. Одновременно с эмиттерами формируются области под контакты коллекторов и нижние обкладки МДП-конденсаторов. В качестве легирующей примеси используется фосфор.

16 – фотолитография для вскрытия окон для травления окисла под МДП-конденсаторы.

Данный этап необходим для создания тонкого окисла между верхней и нижней обкладками конденсатора. Он получается травлением пассивирующего слоя до нужной толщины.

17 – формирование тонкого окисла в местах создания МДП-конденсаторов.

18 - фотолитография для вскрытия контактных окон;

19 - напыление пленки алюминия.

Соединения элементов ИМС создаются металлизацией. На поверхность ИМС методом термического испарения в вакууме наносится слой алюминия толщиной около 1 мкм. После фотолитографии на поверхности ИМС остаются металлические соединения, соответствующие рисунку схемы. После фотолитографии металл обжигается в среде азота при температуре около 500°С.

20 - фотолитография для создания рисунка разводки и нанесение слоя за­щитного диэлектрика.

21 – фотолитография для вскрытия окон контактных площадок для последующего приваривания проводников.

4. Последовательность расчета параметров биполярного транзистора.

Исходные данные для расчета.

Максимальное напряжение на коллекторном переходе: Uкб = 1,5 В

Максимальный ток эмиттера: Іэ = 4,5 мА

Граничная частота fт = 500 МГц.

Дальнейший расчет проводится с помощью программы расчета параметров биполярных транзисторов, результаты расчета, представленные ниже, были получены с помощью данной программы.

Расчет выполняется в следующей последовательности.

1. По заданному максимально допустимому напряжению Uкб определяют пробивное напряжение Uкб0 , которое должно быть хотя бы на 20% больше Uкб и учитывает возможные колебания напряжения питания, т.е. Uкб0=1,2 Uкб, в нашем случае Uкб0=1,8 В. Пробивное напряжение Uпр коллекторного перехода выбираем с коэффициентом запаса 3, это учитывает возможность пробоя по поверхности и на закруглениях коллекторного перехода. В нашем случае Uпр = 5,4 В.

По графику зависимости Uпр (Nдк) [1] , где Nдк – концентрация доноров в коллекторе, находят Nдк . В программе расчета значение концентрации находится численными методами. В нашем случае Nдк = 5·1017 см-3. Данное значение слишком велико, т.к при таком значении возможно появление паразитного n-канала, поэтому уменьшим его до 1016 см-3.

По графику зависимости подвижности электронов от их концентрации [1] находят подвижность электронов. В нашем случае mn = 1200 см2/(В·с).

2. Определяют характеристическую длину распределения акцепторов Lа и доноров Lд:

( 4.1)

где хjк – глубина коллекторного перехода. В нашем случае La = 0,374 мкм; Lд = 0,0748 мкм.

3. Для расчета ширины ОПЗ (области пространственного заряда) на коллекторном и эмиттерном переходах предварительно вычисляют контактную разность потенциалов на коллекторном переходе:

( 4.2 )

где fт – тепловой потенциал, равный 0,0258 В при Т=300 К.; ni – концентрация собственных носителей заряда в кремнии (ni » 1010 см-3). В нашем случае fк = 0,6771 В.

Контактная разность потенциалов на эмиттерном переходе fэ рассчитывается аналогично fк. В нашем случае fэ = 0,1809 В.

4. Рассчитывают ширину ОПЗ, распространяющуюся в сторону базы (Dхкб) и в сторону коллектора (Dхкк) при максимальном смещении коллекторного перехода Uкб :

( 4.3 )

( 4.4 )

где , e0, eн – соответственно диэлектрическая постоянная и относительная диэлектрическая проницаемость полупроводниковой подложки.

В нашем случае Dхкб = 0,387 мкм, Dхкк = 0,6656 мкм.

5. Выбираем ширину технологической базы равной 1 мкм.

6. Определяем концентрацию акцепторов на эмиттерном переходе:

Na(xjэ) = Nдкexp(Wб0/La)

( 4.5 )

В нашем случае Na(xjэ) = 1,338·1017 см-3.

7. В результате высокой степени легирования эмиттера область объемного заряда на эмиттерном переходе в основном будет сосредоточена в базе. Приближенно можно считать, что Dхэб » Dхэ, где

( 4.6 )

В нашем случае Dхэ = 0,08858 мкм.

8. Расчитываем ширину активной базы:

Wба = Wб0 - Dхэ - Dхкб

( 4.7 )

В нашем случае Wба = 0,4944 мкм.

Дальнейший расчет транзистора включает вычисление площади эмиттерного перехода,

9. Расчет минимальной площади эмиттерного перехода осуществляется на основе критической плотности тока через эмиттерный переход.

( 4.8 )

где =const для Si (107 cм/с)

В нашем случае jкр = 2811 А/см2.

( 4.9 )

В нашем случае Sе = 160,1 мкм2.

10. Определим емкость коллекторного перехода на основе граничной частоты транзистора.

Из заданной частоты ft, найдем емкость коллекторного перехода Ск

 

( 4.10 )

В нашем случае Ск = 0,5 пФ

11. Найдем площадь коллекторного перехода как сумму площадей его донной и боковой частей. Причем донная часть площади составляет приблизительно 80% от общей его площади.

Рассчитаем площадь донной части коллекторного перехода:

( 4.11 )

где Vk=Vkp

В нашем случае Sб дон = 2734 мкм2.

Исходя из полученного значения площади найдем площадь боковой части

коллекторного перехода:

( 4.12 )

в нашем случае Sб.бок = 719 мкм2

5. Последовательность расчета параметров интегральных резисторов.

Параметры, которые определяют сопротивление интегрального резистора, можно разделить на две группы:

1) параметры полупроводникового слоя:

толщина W;

характер распределения примеси по глубине N(x);

зависимость подвижности носителей заряда от концентрации m(N);

2)топологические параметры :

длина резистора l;

ширина резистора b.

Первая группа параметров оптимизируется для получения наилучших результатов интегральных транзисторов. Именно для этого расчет транзисторов производится в первую очередь. Таким образом, задача расчета резистора сводится к выбору полупроводникового слоя, в котором будет создаваться резистор, и формы контактов и вычисления длины и ширины.

Воспроизводимость номинальных значений сопротивления обычно равна 15-20% и зависит от ширины резистора. Так, при возрастании ширины от 7 до 25 мкм точность воспроизведения номинала возрастает с ±15 до ±18%.

5.1 Диффузионные резисторы на основе базовой области.

Резисторы данного типа приобрели наибольшее распространение, так как при их использовании достигается объединение высокого удельного сопротивления, что необходимо для уменьшения площади, которую занимает резистор, и сравнительно небольшого температурного коэффициента ТКR       ( ±(0,5…3)·10-3 1/°С ).

5.2. Исходные данные для расчета топологических параметров полупроводниковых резисторов.

Для расчета длины и ширины резисторов необходимы следующие входные данные:

1) номинальные значения сопротивлений R, заданные в принципиальной схеме.

R1- R4 – 4700 Ом;

R5 – 3300 Ом.

2) допустимая погрешность D R.

Исходя из технологических возможностей оборудования выберем DR = 20%

3) рабочий диапазон температур (Tmin , Tmax).

Исходя из предположения, что разрабатываемая ИМС будет предназначена для эксплуатации в климатических условиях, характерных для широты Украины, выберем диапазон температур, определяемый климатическим исполнением УХЛ 3.0 (аппаратура, предназначенная для эксплуатации в умеренном и холодном климате, в закрытых помещениях без искусственно регулируемых климатических условий). Исходя из этого:

Tmin = -60 °С;

Tmax = +40 °С.

4) средняя мощность Р, которая рассеивается на резисторах.

Мощность, рассеиваемая на резисторах, будет расчитана на основе измерянных ранее токов через резисторы, используя закон Ома.

P = I2 R,

( 5.1)

где I – ток через резистор, А;

R – сопротивление резистора, Ом.

Измерянные значения токов несколько увеличим для учета возможных скачков входных токов схемы:

Табл. 6.1 Расчет мощностей резисторов

Значение тока

IR1-4, мА

0,26

IR5, мА

4,94
Увеличенное значение тока

I ’R1-4, мА

0,5

I ’R5, мА

5
Расчитанная мощность

РR1-4, мВт

1,175

РR5, мВт

82,5

5.3. Последовательность расчета топологических параметров параметров полупроводниковых резисторов.

Для расчета параметров интегральных резисторов используется написанная для этих целей программа, значения рассчитанных параметров, приведенные ниже, расчитаны с ее помощью.

1. Выбираем тип резистора, исходя из его номинального сопротивления. В расчитываемой схеме все резисторы целесообразно изготовить дифузионными, сформированными в базовом р-слое.

2. Расчитываем удельное поверхностное сопротивление:

( 5.2)

где Na0 – концентрация акцепторов у поверхности базы, см-3 ;

N – концентрация акцепторов в базе, см-3 ;

Nдк – концентрация доноров в коллекторном слое, см-3 ;

q – единичный заряд, Кл;

m - подвижность носителей заряда, см2/В·с;

W – глубина коллекторного p-n перехода, мкм;

Для расчета принимаем Na0 = 8*1018 см-3 ; Nдк = 1016 см-3 ; значения интегралов расчитываются численными методами на основе существующих зависимостей подвижности носителей от их концентрации. В результате             rS = 222,81 Ом/. Типичное значение поверхностного сопротивления базовой области - 200 Ом/, расчитанное значение показывает приемлемость использования выбранных концентраций.

3. Рассчитываем коэффициент формы резисторов и его относительную погрешность:

( 5.3)

( 5.4)

 

где DrS/rS – относительная погрешность воспроизведения удельного поверхностного сопротивления легированного слоя, которая вызвана особенностями технологического процесса, для расчета примем ее равной 0,05; ТКR – температурный коэффициент сопротивления базового слоя, он равен 0,003 1/°С.

Результаты расчета следующие:

R1 - R4 :

 КФ = 21,094; DКФ/ КФ = 0,00474

R5 :

 КФ = 15,719; DКФ/ КФ = 0,00636

4. Рассчитаем минимальную ширину резистора bточн, которая обеспечит заданную погрешность геометрических размеров:

( 5.5)

где Db – погрешность ширины резистора;

Dl – погрешность длины резистора

В нашем случае

R1 - R4 :

bточн = 1,0455 мкм

R5 :

bточн = 1,0617 мкм

5. Определяем минимальную ширину резистора bP , которая обеспечит заданную мощность Р:

( 5.6)

где Р0 – максимально допустимая мощность рассеяния для всех ИМС, для полупроводниковых ИМС Р0 = 4,5 Вт/мм2.

В нашем случае

R1 - R4 :

bр = 3,5183 мкм

R5 :

bр = 34,1512 мкм

6. Расчетное значение ширины резистора определяется максимальным из расчитанных значений:

bрасч = max{ bP , bточн }

R1 - R4 :

bрасч = 3,5183 мкм

R5 :

bрасч = 34, 1512 мкм

Расчеты b для R1 - R4 дают значение ширины резистора меньше технологически возможной (5 мкм), поэтому для последующих расчетов принимаем bрасч = 5 мкм

7. С учетом растравливания окон в маскирующем окисле и боковой диффузии ширина резистора на фотошаблоне должна быть несколько меньше расчетной:

bпром = bрасч – 2(Dтрав - Dу)

( 5.7)

Dтрав – погрешность растравливания маскирующего окисла,

Dу – погрешность боковой диффузии

для расчета примем Dтрав = 0,3 ; Dу = 0,6 тогда

R1 - R4 :

bпром = 5,6 мкм

R5 :

bпром = 34,7512 мкм

8. Выберем расстояние координатной сетки h для черчения равным 1 мм и масштаб чертежа 500:1, тогда расстояние координатной сетки на шаблоне

 мкм.

9. Определяем топологическую ширину резистора bтоп . За bтоп принимают значение большее или равное bпром значение, кратное расстоянию координатной сетки фотошаблона.

В нашем случае

R1 - R4 :

bтоп = 6 мкм

R5 :

bтоп = 34 мкм

10. Выбираем тип контактных площадок резистора. Исходя из расчитанной топологической ширины выбираем для R1 - R4 площадку, изображенную на рис.1а, для R5 – на рис. 1б.


 

а б

 

Рис. 1 Контактные площадки

11. Находим реальную ширину резистора на кристалле, учитывая погрешности, вызванные растравливанием окисла и боковой диффузией:

b = bтоп + 2(Dтрав + Dу)

( 5.8)

В нашем случае:

R1 - R4 :

b = 7,8 мкм

R5 :

b = 35,8 мкм

12. Определяем расчетную длину резистора:

lрасч = b(R/rS – n1k1 – n2k2 – 0,55Nизг

( 5.9)

где Nизг – количество изгибов резистора на 90°; k1, k2 – поправочные коэффициенты, которые учитывают сопротивление околоконтактных областей резистора при разных конструкциях этих областей; n1, n2 – количество околоконтактных областей каждого типа.

В нашем случае

R1 - R4 :

lрасч = 198,579 мкм

R5 :

lрасч = 284,4

13. Расчитаем длину резистора на фотошаблоне, учитывая растравливание окисла и боковую диффузию:

lпром = lрасч + 2(Dтрав + Dу)

( 5.10)

в нашем случае

R1 - R4 :

lпром = 200,84 мкм

R5 :

lпром = 286,2 мкм

14. За топологическую длину резистора lтоп берем ближайшее к lтоп значение, кратное расстоянию координатной сетки на фотошаблоне.

В нашем случае

R1 - R4 :

lтоп = 200 мкм

R5 :

lтоп = 286 мкм

15. Расчитываем реальную длину резистора на кристалле:

l = lтоп - 2(Dтрав + Dу)

( 5.11)

R1 - R4 :

l = 198,2 мкм

R5 :

l = 284,2 мкм

16. Определяем сопротивление рассчитанного резистора

Rрасч = rS ( 1/b + n1k1 + n2k2 + 0,55Nизг)

( 5.12)

В нашем случае

R1 - R4 :

Rрасч = 4732, 991 Ом

R5 :

Rрасч = 3301, 55 Ом

Погрешность расчета:

( 5.13)

В нашем случае

R1 - R4 :

DRрасч = 0,007

R5 :

DRрасч = 0,00046

Результаты расчета вполне удовлетворяют заданной погрешности.

6. Последовательность расчета МДП – конденсатора.

МДП-конденсаторы (металл-диэлектрик-полупроводник) используют в качестве диэлектрика тонкий слой (0,05…0,12 мкм) SiO2 или Si3N4 . Нижней обкладкой служит высоколегированный эмиттерный слой, верхней – пленка алюминия толщиной от 5000  до 1 мкм. Типичный МДП-конденсатор представляет собой обыкновенный плоский конденсатор, и его емкость определяется по формуле, пФ:

( 6.1 )

где eд/э – диэлектрическая постоянная диэлектрика; e0 – диэлектрическая постоянная вакуума, e0=8,85·10-6 пФ/мкм; S – площадь верхней обкладки, мкм2; d – толщина диэлектрика, мкм.

В противоположность диффузионным конденсаторам МДП-конденсаторы могут работать при любой полярности приложенного напряжения. Кроме того, их емкость не зависит от приложенного напряжения и частоты переменного тока.

Исходные данные для расчета.

необходимое значение емкости: С = 20 пФ;

допуск на емкость: DС = 20%;

рабочее напряжение: U = 4 В;

интервал рабочих температур (УХЛ 3.0): Тmin = -60 °C, Тmax = +40°С;

рабочая частота: 500 МГц.

1. Задаемся напряжением пробоя конденсатора исходя из заданного рабочего напряжения:

Uпр = (2…3)U

( 6.2)

В нашем случае Uпр = 12 В.

2. Определяем толщину диэлектрика, мкм:

d = Uпр / Епр

( 6.3)

где Епр – электрическая прочность диєлектрика, для SiO2 Епр = 103 В/мкм.

В нашем случае d = 0,012 мкм

3. Емкость МДП – конденсатора определяется по формуле, ( 6.1), пФ, исходя из которой площадь верхней обкладки, мкм2:

( 6.4 )

eSiO2 @ 4, в нашем случае S = 6822,76 мм2.

Ширина конденсатора, мкм:

( 6.5 )

В нашем случае =82,6 мкм

4. Выбираем расстояние координатной сетки для черчения h равным 1 мм, масштаб M выбираем равным 500:1.

Расстояние координатной сетки:

Hf = h/M

( 6.6 )

В нашем случае Hf = 2 мкм.

5. Приводим ширину конденсатора к расстоянию координатной сетки:

атоп = [/Hf]

( 6.7 )

здесь [х] – целая часть х.

В нашем случае атоп равно 41 расстоянию координатной сетки.

6. Рассчитываем емкость Срасч рассчитанного конденсатора по формуле   ( 6.1):

Срасч = 20,1271 пФ.

7. Рассчитываем отклонение Срасч от С:

( 6.8 )

В нашем случае DСрасч = 0,636%, что вполне удовлетворяет заданной в начале расчета погрешности.

7. Особенности топологии разрабатываемой ИМС.

Для построения чертежей кристалла и фотошаблонов используется программа АutоСАD 2000 ( разработчик – компания Autodesk ).

При построении чертежей фотошаблонов учтены допуски на минимальные расстояния между отдельными элементами интегральной микросхемы

Все резисторы данной схемы реализуются в базовом слое. Следова­тельно на n карман в котором они находятся подается максимальное напряжение действующее в этой схеме т.е. напряжение питания.

Конденсаторы данной ИМС реализуются по МДП-технологии, что предполагает дополнительный этап фотолитографии для создания слоя тонкого диэлектрика МДП-структуры.

На этапах изготовления ИМС используется негативный фоторезист, кроме этапа разделительной р диффузии когда используется позитивный фоторезист.

Топология кристалла и фотошаблонов представлена на чертежах.

Выводы.

В данной работе была разработана топология и рассчитаны параметры интегральной логической схемы резисторно-емкостной транзисторной логики (РЕТЛ). Приведенные расчеты подтверждают полное соответствие разработанной ИМС требованиям технического задания. Топология микросхемы разработана с учетом технологических возможностей оборудования. Линейные размеры элементов и расстояния между ними больше минимально допустимых, что обеспечит меньшую погрешность при производстве, а следовательно, и больший выход годных изделий при групповом производстве.

Электрические параметры схемы учитывают работу схемы в реальных условиях, а именно скачки питающего напряжения и напряжения на логических входах.

Расчеты параметров элементов схемы предусматривают ее эксплуатацию в климатических условиях, характерных для широты Украины.

Разработанная ИМС полностью пригодна для эксплуатации в современной электронной аппаратуре.


Литература.

1. Калниболотский Ю.М. и др. Расчет и конструирование микросхем.- Киев, "Высшая школа",1983.

2. Конструирование и технология микросхем. Под ред. Коледова Л.А. – М.:"Высшая школа", 1984

3. Методичні вказівки до виконання розрахункових робіт на ЕОМ з курсу "Мікроелектроника та функціональна електроніка", ч.1,2,- Київ, КПІ, 1993.


Страницы: 1, 2