рефераты

рефераты

 
 
рефераты рефераты

Меню

Реферат: Математическое моделирование физических задач на ЭВМ рефераты

Реферат: Математическое моделирование физических задач на ЭВМ

Министерство народного образования

Приднестровский Государственный Университет

им. Т.Г. Шевченко

Физико-математический факультет

Кафедра общей физики и методики преподавания физики

Кафедра информатики и вычислительной техники

Дипломная работа

Математическое моделирование физических задач на ЭВМ

На примере расчета разветвленных цепей постоянного

тока основанного на использовании законов Кирхгофа

Выполнил:

Студент 506 группы

Коваленко А.С.

Научные руководители:

Кандидат

физико-математических

наук, доцент                                                                                        Цыпишка Д.И.

Кандидат

физико-математических

наук, доцент                                                                                         Брагарь Л.Ф.

Тирасполь, 2000г.


Содержание:

Введение....................................................................................................................................... 3

1. Напряжение и ток в электрической цепи................................................................................. 4

2. Резистивный элемент.............................................................................................................. 5

3. Источники................................................................................................................................ 6

Глава 1. Задача анализа разветвленной цепи.................................................................... 7

Глава 2. Пример. Результаты вычислений........................................................................... 9

Глава 3. Методика моделирования...................................................................................... 10

1. Линейный граф и матрица соединений................................................................................... 10

2. Уравнения контурных токов................................................................................................... 13

3. Алгоритм формирования узловых уравнений........................................................................ 16

Заключение................................................................................................................................ 17

Использованная литература................................................................................................. 18

Приложение................................................................................................................................ 19


 

Введение

Все электротехнические и радиотехнические устройства пред­ставляют собой электромагнитные устройства, главные про­цессы в которых подчиняются общим законам электромагне­тизма. В любом электромагнитном устройстве происходит движение электрических зарядов, неразрывно связанное с изменяющимся во времени и пространстве электромагнитным полем, двумя сторонами которого являются электрическое и магнитное поля.

Электромагнитные процессы сопровождаются взаимным преобразованием электромагнитной энергии в другие виды энергии. Точный анализ этих процессов, описываемых систе­мами уравнений в частных производных (уравнениями Макс­велла), - задача, трудно разрешимая даже в простейших слу­чаях. Но для инженерных расчетов и проектирования устройств необходим количественный анализ. Поэтому возникает потреб­ность в приближенных методах анализа, позволяющих с достаточной степенью точности решать широкий круг задач. Такие методы дает теория электрических цепей, которая для характеристики электромагнитных процессов вместо векторных величин теории поля, зависящих от пространственных коорди­нат и времени, вводит интегральные скалярные величины – ток и напряжение, являющиеся функциями времени.

Для приближенного учета процессов преобразования электромагнитной энергии в теории цепей вводят идеальные элементы с выводами или полюсами, через которые проходит электрический ток. Простейшими идеальными, базисными эле­ментами являются двухполюсные элементы с двумя полюсами или выводами – индуктивный, емкостный и резистивный эле­менты, учитывающие накопление энергии в магнитном и электрическом полях и необратимое преобразование электро­магнитной энергии в другие виды энергии. Для учета преобра­зования энергии неэлектрической природы (химической, меха­нической, тепловой и т. д.) в электромагнитную энергию вводят элемент с двумя выводами, называемый источником. Наряду с указанными вводят четырехполюсные и многополюсные эле­менты в общем случае с n выводами.

Соединяя между собой соответствующим образом эти идеальные элементы, получают электрическую цепь, приближенно отображающую электромагнитные процессы в каком-либо устройстве по отношению к интересующим выводам.

Теория цепей применима к большому числу устройств, в которых представляют интерес процессы в отдельных точках – выводах.

В настоящее время существуют методы и средства расчета радиотехнических цепей на основе математических моделей, представляющие собой в общем случае системы нелинейных дифференциальных уравнений. Одним из многих таких средств является программа, предложенная в [1], которая представляет собой реализацию математической модели расчета цепей постоянного тока. Программа работает следующим образом: пользователь вводит все данные для расчета цепи, самостоятельно производя анализ цепи, т.е. он вводит количество узлов, количество ветвей с элементами, находящимися на них и номиналы этих элементов. Програма решает получающиеся при этом линейные уравнения и выводит результат вычислений.

Недостатком указанных выше программных средств является отсутствие автоматизированного построения разветвленных цепей, ввода элементов, выбора направления обхода контуров и токов в ветвях по введенной принципиальной схеме. Кроме этого существующие программы не позволяют непосредственно при расчетах проводить анализ полученных результатов, в динамике изменять параметры компонентов.

В связи с этим целью дипломной работы является: разработка математической модели и программы анализа и расчета цепей постоянного тока, автоматического выбора направления обхода контура и направления токов в ветвях цепи, и выводить результаты вычислений.

В данной дипломной работе рассматривается метод расчета и анализа линейных разветвленных цепей содержащих резистивные элементы и  источники ЭДС с постоянными пара­метрами элементов основанный на использовании законов Кирхгофа.

1. Напряжение и ток в электрической цепи

Электрический ток и напряжение являются основны­ми величинами, характеризующими состояние электрических цепей.

Электрический ток в проводниках представляет явление упорядоченного движения электрических зарядов. Под терми­ном «ток» понимают также интенсивность или силу тока, измеряемую количеством электрического заряда q, прошед­шего через поперечное сечение проводника в единицу вре­мени:

Следовательно, ток представляет собой скорость изменения заряда во времени. В СИ заряд выражается в кулонах (Кл), время – в секундах (с), ток – в амперах (А).

Ток как отношение двух скалярных величин является скалярной алгебраической величиной, знак которой зависит от направления движения зарядов одного знака, а именно условно принятого положительного заряда. Для однозначного опреде­ления знака тока за положительное направление достаточно произвольно выбрать одно из двух возможных направлений, которое отмечают стрелкой (рис. 1.1, а).

Если движение поло­жительного заряда происходит в направлении стрелки, а движение отрицательного заряда—навстречу ей, то ток поло­жителен. При изменении направления движения зарядов на противоположный ток будет отрицательным.

Перед началом анализа на всех участках цепи необходимо отметить положительные направления то­ков, выбор которых может быть произ­вольным. Программа расчета построена так, что за положительное направление тока принято направление движения «по часовой стрелке».

Прохождение электрического тока или перенос зарядов в цепи связаны с преобра­зованием или потреблением энергии. Для определения энергии, затрачиваемой на перемещение заряда между двумя рассмат­риваемыми точками проводника, вводят новую величину – напряжение.

Напряжением называют количество энергии, затрачи­ваемой на перемещение единицы заряда из одной точки в другую:

где w—энергия.

При измерении энергии в джоулях (Дж) и заряда в кулонах (Кл) напряжение выражают в вольтах (В).

Напряжение как отношение двух скалярных величин также является скалярной алгебраической величиной. Для однознач­ного определения знака напряжения между двумя выводами рассматриваемого участка цепи одному из выводов условно приписывают положительную полярность, которую отмечают либо стрелкой, направленной от вывода, либо знаками «+», «-» (рис. 1.1, б, в). Напряжение положительно, если его поляр­ность совпадает с выбранной; это означает, что потенциал вывода со знаком «+», из которого выходит стрелка, выше потенциала второго вывода.

Перед началом анализа должны быть указаны выбранные положительные полярности напряжений – только при этом условии возможно однозначное определение напряжений. В программе по умолчанию каждому источнику ЭДС приписывают «+» к высшему потенциалу, а «-» – к  низшему.

Положительную полярность напряжения выбирают согласованной с выбранным положительным направлением тока, когда стрелки для тока и напряжения совпадают или знак «+» полярности напряжения находится в хвосте стрелки, обозначающей положительное направление тока. При согласо­ванном выборе полярности, очевидно, достаточно ограничиться указанием только одной стрелки положительного направления тока.

Для обозначения условно положитель­ной полярности применяют знаки «+», «-» у выводов участка цепи.

2. Резистивный элемент

Под резистивным элементом электрической цепи или активным сопротивлением понимают идеализированный эле­мент, в котором происходит только необратимое преобразование электромагнитной энергии в теплоту или другие виды энергии, а запасание энергии в электрическом и магнитном полях от­сутствует.

По свойствам к этому идеальному элементу довольно близки такие реальные устройства, как угольные сопротивления, реостаты, лампы накаливания при относительно небыстрых изменениях токов.

Условное графическое обозначение резистивного элемента Представлено на рис. 1.2, а, где указаны принятые положитель­ные направления напряжения и тока.

Основное уравнение элемента, связывающее ток и напряжение, так называемая вольт-амперная характеристика, определяется законом Ома, который устанавливает пропорциональ­ность между напряжением и током:

U=RI, I=GU                    (1.3)

Коэффициент пропорциональности в первом выражении (1.3), равный отношению напряжения и тока, является электрическим сопротивлением:

R=U/I                             (1.4)

Численно сопротивление равно напряжению на элементе при токе в 1 А. Значение сопротивления выражается в омах.

Обратная величина – отношение тока к напряжению – представляет собой электрическую проводимость:

G=I/U=1/R.                    (1.5)

В теории линейных электрических цепей сопротивление и проводимость принимают постоянными, не зависящими от тока, напряжения и других величин. В реальных элементах это допущение, так же как и допущение отсутствия запасания энергии, выполняется приближенно.

3. Источники

Под источником в теории цепей понимают элемент, питающий цепь электромагнитной энергией. Эта энергия по­требляется пассивными элементами цепи – запасается в индуктивностях и емкостях и расходуется в активном сопротивлении.

Напряжения источников, представляющие задан­ные функции времени, называют также приложенными к цепи или возбуждающими цепь сигналами. Примерами реальных источников электромагнитной энергии могут служить генераторы постоянных, синусоидальных и импульсных сигналов разнообразной формы, сигналы, полу­чаемые от различного рода датчиков, антенн радиоприемных устройств и т. д. Эти источники сигналов либо являются первичными источниками, в которых происходит непосредст­венное преобразование энергии неэлектромагнитной природы (механической, химической, тепловой и т. д.) в электромагнит­ную энергию, либо получают питание от первичных источников. Источник является актив­ным элементом.

Для анализа цепей вводят идеализированный источник напряжения, который учитывает главные свойства реального источника.

Источник напряжения. Под источником напряжения понимают такой элемент с двумя выводами (полюсами), напряжение между которыми задано в виде некоторой функции времени независимо от тока, отдаваемого во внешнюю цепь.


а)                      б)

Рисунок 1.3.

Наиболее часто применяемые условные графические обо­значения источника напряжения представлены на рис. 1.3, а и б, где принятая положительная полярность напряжения источника указывается либо стрелкой внутри кружочка, либо большой и малой чертами, малая соответствует знаку «-», а большая - «+». Поскольку положительную полярность напряжения усло­вились обозначать знаками «+», «-», для источника напряже­ния в программе применено обозначение, показанное на рис. 1.3, б.


Глава 1. Задача анализа разветвленной цепи

Электрическую цепь, приближенно отображающую электро­магнитные процессы в реальном устройстве, составляют путем соответствующего соединения между собой рассмотренных двухполюсных элементов: сопротивления, индуктивности, ем­кости и источников сигнала. В общем случае отдельные элементы, а также отдельные участки цепи могут соединиться произвольно. В дипломной работе рассмотрены только соединение сопротивления и источника сигнала, в качестве которого используют ЭДС.

В результате получается электрическая схема, имеющая определенную геометрическую конфигурацию. На рис. 4 приложения показан пример схемы электрической цепи, составлен­ной из нескольких сопротивлений и источников ЭДС.

Основными понятиями, характеризующими геометрическую конфигурацию разветвленной цепи, являются ветвь и узел.

Под ветвью в общем случае понимают участок цепи с двумя выводами. Токи ветви принимают в качестве неизвестных переменных, характеризующих состояние цепи. Поэтому, что конкретно следует понимать под ветвью, зависит от выбора переменных цепи. Ветвью можно считать каждый элемент цепи. Но для уменьшения числа переменных за ветви иногда принимают также участки из последовательного соеди­нения отдельных элементов, токи которых имеют одно и то же значение, и участки из параллельного соединения отдельных элементов, напряжения на которых имеют одно и то же значение. При анализе схемы за ветвь принимается участок цепи между двумя узлами цепи.

Узел электрической цепи – это точка на схеме, в которой сходятся более двух ветвей [4]. Например, на рисунке №4 приложения – 4 узла.

Задача анализа электри­ческой цепи формулируется та­ким образом: Заданы схема электрической цепи со значения­ми всех ее элементов, а также напряжения источников, действующих в цепи. Требуется найти токи ветвей. В дальнейшем будем применять общие термины, назы­вая заданные напряжения источников функциями воз­буждения или сигналами, а искомые токи вет­вей, определяемые в результате анализа цепи, - реакциями. Следовательно, требуется найти реакции цепи на действие заданных сигналов.

Выводы – узлы или ветви, реакции которых необходимо найти, - называют   выходными, а выводы, к которым при­соединены источники, - входными.

Программа предназначена для анализа любой линейной цепи произвольной конфигура­ции с любым конечным числом элементов.

Для определения искомых реакций – токов ветвей в общем случае – необходимо со­ставить уравнения цепи с помощью двух систем уравнений:

1) уравнений элементов, связывающих ток и напряже­ние каждого элемента, а также заданные напряжения. Уравнения элементов не зависят от схемы и геометрической конфигурации цепи, в которую входят элементы;

2) уравнений соединений, которые определяются только геометрической конфигурацией и способами соединений ветвей (элементов цепи) и не зависят от вида и характера элементов. Уравнения соединений устанавливают связи между токами и напряжениями отдельных элементов, входящих в цепь.

Уравнения соединений составляют па основе двух законов Кирхгофа, которые связывают токи ветвей, сходящихся в узлах, и напряжения ветвей, входящих в контуры; контуры представляют замкнутые пути, проходящие однократно через ряд ветвей и узлов.

Первый закон Кирхгофа, выражающий закон сохра­нения заряда, дает уравнение равновесия токов в узле цепи и формулируется так: в любой момент алгебраическая сумма токов ветвей, сходящихся в узле электрической цепи, равна нулю:

.

Знак тока определяется выбором положительных направле­ний токов ветвей; токам, выходящим из узла, приписывают условно знак «-», а током, входящим в узел, - знак «+».

Второй закон Кирхгофа, выражающий закон сохра­нения энергии, дает уравнение равновесия напряжений в контуре и формулируется следующим образом: в любой момент алгебраическая сумма напряжений ветвей в контуре равна нулю

.

Знак напряжения определяется выбором положительных полярностей напряжений ветвей: если при обходе контура перемещение происходит в сторону понижения или падения напряжения, то напряжению ветви условно приписывают знак «+», если в сторону повышения напряжения - знак «-».

Линейные цепи, составленные из элементов одного вида, например резистивных, описываются системами линейных ал­гебраических уравнений.

Страницы: 1, 2, 3, 4, 5