рефераты

рефераты

 
 
рефераты рефераты

Меню

Реферат: Кибернетика рефераты

Вопросы и упражнения

1.   Что называется R-преобразованием? Приведите примеры систем с детерминированным R-преобразованием.

2.   Что общего и в чем различие у S2 и S3 –систем?

3.   Какие типы систем изучают гуманитарные науки и почему?

4.   Чем характеризуются S0-системы?

3.2. Функции системы

Всякий объект интересен результатом своего существования, местом, которое он занимает среди других объектов в окружающем мире. Это соответствует целенаправленности человеческой деятельности. Сталкиваясь с новым объектом, мы, прежде всего интересуемся его функциями, поэтому первым описанием проблемы или системы должно быть функциональное описание. Функциональное описание исходит из того, что всякая система выполняет некоторые функции: просто существует, служит областью обитания другой системы, обслуживает систему более высокого порядка, является контрольной для некоторого класса систем, служит средством или исходным материалом для создания более совершенной системы и т.д. Система может быть однофункциональной, или многофункциональной. В зависимости от степени воздействия на внешнюю среду и характера взаимодействия с другими системами, функции можно распределить по возрастающим рангам: пассивное существование, материал для других систем; обслуживание системы более высокого прядка; противостояние другим системам, среде (выживание); поглощения (экспансия) других систем и среды; преобразование других систем и среды.

Функциональное описание иерархично. Функция системы представляется числовым функционалом, зависящим от функций, описывающих внутренние процессы, либо качественным функционалом (типа упорядочивания: лучше-хуже).

Обычно функция системы выполняется, если параметры системы и процессы ограничены определенными пределами, вне которых система разрушается либо радикально меняет свойства.

Функционал, количественно или качественно описывающий деятельность (действие) системы, называют функционалом эффективности.

Если функционал эффективности больше некоторого условного порога, то считается, что функция выполняется, если меньше – не выполняется. Введение порога, как и определение функции, выражает позицию того, кто составляет описание. Несмотря на разнообразие систем и функций, характер зависимости эффективности от произвольного параметра типичен. Это обстоятельство объясняет общность функционального описания независимо от физического содержания системы. Зависимость включает три характерные области: слабой и сильной связи и насыщения.

Существует область, где система подавляется средой, область, где она соревнуется с ней, и область, где система становится малочувствительной к внешним воздействиям. Если функция системы состоит в сохранении своего состояния, например температуры, а внешнее влияние включает приток тепла, то система противостоит этому влиянию при помощи теплопроводности и выравнивания температуры. В наиболее общем виде идея противодействия любой системы внешнему влиянию выражена принципом Лешатье: поддержка стабилизирующего процесса требует некоторого уменьшения эффективности по сравнению с первоначальным значением.

Существуют системы, которые реагируют на внешнее воздействие, порождая в себе процессы не ослабления воздействия, а активной перестройки и противодействия, которые могут изменять параметры среды или использовать первоначально неблагоприятные изменения в свою пользу. При этом за уменьшением эффективности может последовать ее увеличение, превышающее первоначальную величину. Может произойти перестройка, которая повлечет не только изменение состояния и появление новых процессов, но и изменение функций и пределов работоспособности системы.

Функциональное описание системы можно задать семеркой:

Sf={T,x,C,Q,y,jh},

Где T-множество моментов времени, х - множество мгновенных значений входных воздействий, С={c: T®x} – множество допустимых входных воздействий; Q –множество состояний; y- множество значений выходных величин; Y={u:T®y}-множество выходных величин; f={T´T´T´c®Q}-переходная функция состояния; h:T´Q®y – выходное отображение; с- отрезок входного воздействия; u – отрезок выходной величины.

Такое описание системы охватывает широкий диапазон свойств.

Недостаток данного описания – не конструктивность: трудность интерпретации и практического применения. Функциональное описание должно отражать следующие характеристики сложных и слабо познанных систем: параметры, процессы и иерархию.

Примем, что система S выполняет N функций y1, y2, …,ys, …,yN, зависящих от n-процессов F1, F2, …,Fi, …, Fn. Эффективность выполнения s-й функции

Эs = Эs(ys) =Э(F1, F2, …,Fi, …, Fn) =Эs({Fi}), i=1…n, s=1…N.

Общая эффективность системы есть вектор-функционал Э={Эs}. Эффективность системы зависит от огромного количества внутренних и внешних факторов. Представить эту зависимость в явной форме чрезвычайно сложно, а практическая ценность такого представления незначительна из-за многомерности и многосвязности. Рациональный путь формирования функционального описания состоит в применении такой многоуровневой иерархии описаний, при которой описание более высокого уровня будет зависеть от обобщенных и факторизованных переменных низшего уровня. 

Иерархия создается по уровневой факторизацией процессов {Fi} при помощи обобщенных параметров {Qi}, являющихся функционалами {Fi}. Предполагается, что число параметров значительно меньше числа переменных, от которых зависят процессы. Такой способ описания позволяет построить мост между свойствами взаимодействующих со средой элементов (подсистемами низшего уровня) и эффективностью системы.

Процессы {Fi(1)} можно обнаружить на выходе системы. Это процессы взаимодействия со средой. Будем называть их процессами первого уровня и полагать, что они определяются:

a) параметрами системы первого уровня - Q1(1), Q2(1),…, Qj(1),…, Qm(1) ;

б) активными противодействующими параметрами среды, непосредственно направленными против системы для снижения ее эффективности -  b1, b2,…, bk,…, bК;

в) нейтральными (случайными параметрами среды) c1, c2,…, cl,…, cL;

г) благоприятными параметрами среды d1, d2,…, dp,…, dP.

Среда имеет непосредственный контакт с подсистемами низших уровней, воздействуя через них на подсистемы более высокого уровня иерархии, так что Fi*= Fi*({bk},{cl}, {dp}). Путем построения иерархии (параметры b-го уровня - процессы (b-1)-го уровня - параметры (b-1)-го уровня) можно связать свойства среды с эффективностью системы.

Параметры системы {Qj} могут изменяться при изменении среды, они зависят от процессов в системе и записываются в виде функционалов состояния   Qj1(t). Собственным функциональным пространством системы W называется пространство, точками которого являются все возможные состояния системы, определяемое множеством параметров до уровня b: Q={Q(1), Q(2), …Q(b) }. Состояние может сохраняться постоянным на некотором интервале времени Т.

Процессы {Fi(2)}не могут быть обнаружены на выходе системы. Это процессы второго уровня, которые зависят от параметров Q(2) подсистем системы (параметров второго уровня). И так далее.

Образуется следующая иерархия описания: эффективность (конечное множество функционалов) – процессы первого уровня (функции) – параметры первого уровня (функционалы) - процессы второго уровня (функции) – параметры второго уровня (функционалы) и т.д. На каком-то уровне наши знания о функциональных свойствах системы исчерпываются, и иерархия обрывается. Обрыв может произойти на разном уровне для разных параметров (процессов), причем как на процессе, так и на параметре.

Внешние характеристики системы определяются верхним уровнем иерархии, поэтому часто удается ограничиться описанием вида ({Эi},{yS}, {Fi(1)}, {Qj(1)}, {bk}, {cl}, {dp}). Число уровней иерархии зависит от требуемой точности представления входных процессов.

Вопросы и упражнения

1.   Чем вызвана необходимость функционального описания системы?

2.  Как ранжируются функции систем в зависимости от степени воздействия на внешнюю среду и характера взаимодействия с другими системами?

3.  В чем состоит иерархия функционального описания?

4.  Что определяет функционал эффективности?

5.  В чем заключается принцип Лешатье? Приведите пример.

6.  Какие характеристики сложных и слабо познанных систем должно отражать функциональное описание?

7.  Назовите достоинства и недостатки общей формулы функционального описания.

8.  Постройте иерархию функционального описания системы “автомобиль” (все функционалы описывайте качественно).

9.  Запишите общую формулу функционального описания для системы “учебная группа”.

3.3. Время в описании систем

Так как Э=Э(Q(1)) и Q(1)=Q(1)(b,c,d), то функциональное описание системы можно представить следующим образом:

Sf= { Q(1)(t), Q(2)(t), …Q(b) (t)}.

Функции времени, применяемые при описании систем, имеют особый смысл. Запись Fi(t), i=1,…,n, вообще говоря, предполагает, что все процессы протекают в едином и изотропном времени. В сложных системах время относительно: в зависимости от свойств подсистем, в которых протекает процесс, и от пространственного направления процесса, его скорость может быть различной, это равносильно изменению масштаба времени. Для описания физических систем Эйнштейн ввел четырехмерный пространственно-временной континуум и показал, как зависит ход времени от скорости относительного движения. Мы привыкли оценивать различие в ходе лабораторного времени и собственного времени движущейся физической системы через изменение массы, которая в нерелятивистском мире является устойчивым измеряемым инвариантом, а в релятивистском может служить показателем “меры релятивизма”.

Системный подход к проблеме отсчета времени усложняется как из-за возможности релятивистских скоростей, так и потому, что однотипные вещественно-энергетические процессы могут (в зависимости от свойств системы) протекать с различной скоростью. Для жизнедеятельности системы важно число циклов соответствующих процессов (например, делений клетки), а не лабораторное время. Здесь нет столь удобного для измерения показателя, как масса в физических системах. Основную роль играют информационные процессы, которые мы плохо умеем вычислять, и не умеем измерять.

Если предположить, что относительная скорость информационных процессов способна порождать изменение относительного масштаба времени, то величину энтропии системы можно рассматривать как показатель этого изменения: чем меньше энтропия, тем инерционнее система к внешнему воздействию. Физический смысл этого предположения состоит в том, что ускорение процессов (при прочих равных условиях) требует повышения уровня организации.

Если при одинаковом увеличении энергии двух систем (в остальном одинаковых) на величину DQ скорость процессов в первой оказалась больше, чем во второй, то температура первой системы должна повыситься меньше, так как большая часть энергии расходуется в соответствии с назначением системы, а меньшая – на ее нагрев. Следовательно, энтропия первой системы будет ниже, чем второй (в лабораторной системе отсчета).

Живые существа имеют внутренний отсчет времени (биологические часы), который определяет всю их жизнедеятельность. Продолжительность жизни таких систем следует исчислять по эти часам, а не по лабораторным, до которых системе, в сущности, нет дела. На протяжении жизни системы ход внутреннего времени, измеренный по лабораторным часам, неодинаков: начиная жить, существо растет (и взаимодействует со средой) несравненно быстрее, чем впоследствии, а к моменту смерти “ход времени замедляется до нуля”. Если принять, что замедление хода времени приблизительно пропорционально сложности системы (понимая под сложностью количество информации, необходимое для описания системы), то можно представить себе, что относительный масштаб времени в течении жизни системы (по представлению внешнего наблюдателя) изменяется на много порядков. Например, в сжатые сроки эмбрионального развития живое существо проходит весь путь естественной эволюции.

Вопросы и упражнения

1.   В чем состоит относительность времени в сложных системах? Приведите примеры.

2.   Что можно считать инвариантом при описании временных процессов в системах?

Глава 4. Морфологическое описание системы

4.1. Состав элементов

Морфологическое описание системы должно давать представление о строении системы, ее подсистемах и элементах. Оно не может быть исчерпывающим. Глубина описания, уровень детализации, т.е. выбор элементов, внутрь которых описание не проникает, определяется назначением описания. Морфологическое описание иерархично. Конкретизация морфологии дается на стольких уровнях, сколько их требуется для создания представления об основных свойствах системы. В иерархии описания может существовать такая ступень, где прежние описания, применявшиеся на более высоких ступенях, становятся непригодными и необходимо применить принципиально новый способ описания.


Изучение морфологии начинается с элементного состава (рис. 2.). Под элементом в данном случае понимается подсистема, внутрь которой описание не проникает. Элементный состав может быть гомогенным (содержать однотипные элементы), гетерогенным (содержать разнотипные элементы) и смешанным. Однотипность не означает полной идентичности и определяет только близость основных свойств. Гомогенности, как правило, сопутствуют избыточность и наличие скрытых возможностей, дополнительных, неиспользованных ресурсов. Гетерогенные элементы специализированы. Они экономичны и могут быть эффективными в узком диапазоне внешних условий, но быстро теряют эффективность вне этого диапазона. Гомогенные системы  стоят выше гетерогенных по уровню организации. Иногда элементный состав определить не удается, и его считают неопределенным.

Вопросы и упражнения

1.   Для чего предназначено морфологическое описание системы?

2.   Какие системы считаются гомогенными, гетерогенными и смешанными?

3.   Какого типа элементы преобладают в системе “учебная группа”?

4.2. Свойства элементов

Важным признаком морфологии является назначение (свойства) элементов. Выделяют информационные, энергетические и вещественные элементы. Передача информации требует энергии, перенос энергии невозможен без информации. Важно отметить, что преобладает. Расход энергии в системах электрической связи ничтожен по сравнению с переносом энергии по линиям электропередачи, а количество информации, которое переносится силовыми потоками электронов, ничтожно по сравнению с тем, которое передается средствами связи. Информационные элементы предназначены для приема, запоминания и преобразования информации. Это преобразование может состоять:

1.   В изменении вида энергии, который несет информацию. Например, электромагнитная энергия световых лучей, несущих изображение, преобразуется в электрическую энергию при помощи кинескопа или глаза.

2.   В изменении способа кодирования информации. Например, музыкальный код преобразуется в код электрических импульсов, которые передаются от уха в головной мозг.

3.   В сжатии информации сокращением избыточности. Например, уменьшение разрешающей способности, отбор признаков.

4.   В принятии решения (распознавание, выбор поведения).

Определение. Обратимыми называются преобразования, не связанные с потерей (созданием) информации.

Накопление информации (запоминание) является обратимым преобразованием в том случае, если не происходит потерь информации в течение времени хранения. Принятие решений связано с потерей информации. Эффективность выполнения информационной функции определяется вносимыми искажениями и непредусмотренными схемой работы элемента потерями информации, которые отрицательно влияют на работу других элементов и системы в целом.

Энергоснабжение элементов, выполняющих информационные функции, может осуществляться:

1.  при помощи самого информационного сигнала (который должен обладать соответствующим избытком энергии);

2.   при помощи отдельного энергетического сигнала, поступающего извне;

3.  за счет внутренних ресурсов (энергия запасена в самом элементе).

Функции энергетических элементов связаны с преобразованием энергии. Цель преобразования – выработать необходимую системе энергию в той форме, в которой она может потребляться другими элементами. Для энергетических элементов большое значение имеет коэффициент полезного действия, который в конечном итоге определяется эффективность элемента.

Преобразование энергии состоит в изменении параметров энергетического потока. Поток входной энергии может поступать извне (из среды) либо от других элементов (в которых он запасен на время жизни системы). Выходной энергетический поток направлен в другие системы, либо в среду (для ее преобразования или сохранения определенных условий, например температуры). Процесс преобразования энергии нуждается в информации, которая может быть сосредоточена в энергетическом элементе. Носителем информации может быть как преобразуемый, так и сторонний энергетический поток.

Интенсивность и содержание процесса преобразования энергии могут изменяться в течение жизни системы. Необходимая для этого информация может поступать от других элементов либо вырабатываться энергетическим элементом, который в этом случае выполняет смешанную информационно-энергетическую функцию.

Элементы, преобразующие вещество (кроме сырья, т.е. исходного вещества), нуждаются в энергии и информации. То и другое может содержаться в самом вещественном элементе, поступать от других элементов системы или из среды.

Преобразование вещества может быть механическим (штамповка деталей), химическим (производство пластмассы), физическим (образование плазмы), биологическим и т. д. В сложных системах преобразование вещества носит смешанный характер. Вещество можно использовать для создания энергии в подсистемах со смешанной функцией преобразования вещества и энергии. Вещество можно использовать как носитель энергии и информации в системах со смешанными функциями преобразования вещества, энергии и информации. Например, пища живых существ является источником химической энергии и одновременно носителем информации.

Выделяют неопределенные, или нейтральные элементы. Любые процессы (в том числе и случайные) приводят к преобразованию вещества, энергии или информации.

Страницы: 1, 2, 3, 4, 5, 6