рефераты

рефераты

 
 
рефераты рефераты

Меню

Реферат: Диалектика развития понятия функции. Различные подходы к изучению функций в школе и исследования с помощью ЭВМ. рефераты

         В общем виде понятие обобщенной функции было введено французом Лораном Шварцем. В 1936 г. 28-летний советский математик и механик Сергей Львович Соболев первым рассмотрел частный случай обобщенной функции, включающей и дельта-функцию, и применил созданную теорию к решению ряда задач математической физики. Важный вклад в развитие теории обобщенных функций внесли ученики и последователи Л. Шварца - И. М. Гельфанд, Г. Е. Шилов и другие.

         Прослеживая исторический путь развития понятия функции невольно приходишь к мысли о том, что эволюция еще далеко не закончена и, вероятно, никогда не закончится, как никогда не закончится и эволюция математики в целом. Новые открытия и запросы естествознания и других наук приведут к новым расширениям понятия функции и других математических понятий. Математика - незавершенная наука, она развивалась на протяжении тысячелетий, развивается в нашу эпоху и будет развиваться в дальнейшем.

ИЗУЧЕНИЕ ФУНКЦИЙ В ШКОЛЕ

         Не смотря на чрезвычайно большой объем, широту и сложность понятия функции, его простейший вариант дается уже в средних классах школы. Это понятие в дальнейшем играет важную роль, являясь базовым понятием в изучении алгебры и начал анализа. Начиная с 7 класса средней школы идет постепенное изучение свойств функций и функциональных зависимостей. Рассматриваются различные классы функций: начиная с простейших линейных функций и их графиков, затем следуют квадратичные функции, функции обратной пропорциональности и дробно-линейные функции. В более старших классах вводятся тригонометрические функции, и, наконец,  показательные и логарифмические функции. Все эти функции рассматриваются только как функции одной переменной, причем сами переменные не выходят за рамки множества вещественных чисел.

         В настоящее время, на волне педагогического поиска, стало появляться множество экспериментальных учебников для использования в школе. Наряду с добротными, толково написанными учебниками, в школы стала попадать, под предлогом апробации, масса учебников с довольно вольной трактовкой учебного материала, в том числе и глав, касающихся изучения функций. Часто нарушается логический порядок следования изучаемых разделов, допускаются ошибки при построении графиков, материал необоснованно упрощается, примитивизируется или наоборот, чрезмерно перегружается терминами и символикой.

         Но тем не менее, в настоящее время в изучении понятия функции в школе преобладающими являются два основных подхода: индуктивный и дедуктивный. Сложившись исторически, они наиболее полно отвечают целям и задачам образования, и поэтому именно им отдано предпочтение при изучении математики, в том числе функций, в средних классах школ.

         Вот как, примерно, реализуется индуктивный подход к изучению понятия функции в 7 классе:

         “На практике мы часто встречаемся с зависимостями между различными величинами. Например, площадь круга зависит от его радиуса, масса металлического бруска зависит от его объема и плотности металла, объем прямоугольного параллелепипеда зависит от его длины, ширины и высоты.

         В дальнейшем мы будем изучать зависимость между двумя величинами.

             Рассмотрим примеры.”

         Далее следуют примеры призванные наглядно продемонстрировать только что изложенный материал.

         П р и м е р 1. Площадь квадрата зависит от длины его стороны. Пусть сторона квадрата равна a см, а его площадь равна S см2.

         Для каждого значения переменной a можно найти соответствующее значение переменной S.

         Так,

                                    если a = 3,    то S = 32 = 9;

                                    если a = 15,  то S = 152 = 225;

                                    если a = 0,4, то S = 0,42 = 0,16.

         Зависимость переменной S от переменной a выражается формулой

S = a2

(по смыслу задачи a > 0).

         Затем дается первое определение зависимой и независимой переменных:

         “Переменную a, значения которой выбираются произвольно, называют независимой переменной, а переменную S, значения которой определяются выбранными значениями a, - зависимой переменной”.

        “ П р и м е р 2. На рисунке 2 изображен график температуры воздуха в течении суток.

С помощью этого графика для каждого момента времени t (в часах), где 0 £ t £ 24, можно найти соответствующую температуру p (в градусах Цельсия). Например,

если t = 6, то p = -2;

если t = 12, то p = 2;

если t = 17, то p = 3;

         Здесь t является независимой переменной, а p - зависимой переменной.

         П р и м е р 3. Стоимость проезда в пригородном поезде зависит от номера зоны, к которой относится станция. Эта зависимость показана в таблице (буквой n обозначен номер зоны, а буквой m - соответствующая стоимость проезда в тысячах рублей):

         По этой таблице для каждого значения n, где n = 1, 2, ..., 9, можно найти соответствующее значение m. Так,

если n = 2, то m = 1.5;

если n = 6, то m = 4   ;

если n = 9, то m = 8.5;

         В этом случае n является независимой переменной, а m - зависимой переменной.”

         Обилие примеров, призванных проиллюстрировать понятие функции, объясняется тем фактом, что проводя аналогии между различными примерами, учащиеся интуитивно нащупывают суть этого понятия, строят догадку относительно функциональных зависимостей в быту и в природе, и получают ее подтверждение в последующих примерах. Второй не менее важной причиной является то, что каждый из этих примеров содержит функцию заданную одним из возможных способов. В первом примере она задана аналитически, во втором - графически, в третьем это таблица. Это не случайность, разбирая примеры вместе с учителем, дети сразу привыкают к различным способам задания функций. И когда преподаватель начнет рассказывать параграф о способах задания функций, ученикам будет гораздо легче осознать новый материал, потому что для них он не будет абсолютно новым - они уже сталкивались с этим ранее.

         Далее дается само определение функции, вводятся термины аргумент и значение функции.

         “В рассмотренных примерах каждому значению независимой переменной соответствует единственное значение зависимой переменной. Такую зависимость одной переменной от другой называют функциональной зависимостью или функцией.

         Независимую переменную иначе называют аргументом, а о зависимой переменной говорят, что она является функцией от этого аргумента. Так, площадь квадрата является функцией от длины его стороны; путь, пройденный автомобилем с постоянной скоростью, является функцией от времени движения. Значения зависимой переменной называют значениями функции.

         Все значения которые принимает независимая переменная, образуют область определения функции.”

         Так на практике реализуется индуктивный подход к изучению функций в школе. Альтернативой ему служит дедуктивный подход, который, хотя и применяется реже, имеет целый ряд  положительных аспектов, которые и стали причиной его применения в школе. Для этого подхода характерно первоначальное полное и сжатое изложение учебного материала, пускай даже малопонятного при первом прочтении, и дальнейшая углубленная проработка всех примеров, терминов и определений. Такой подход к изучению функций и не только их позволяет учащимся самостоятельно попытаться проследить логические связи в излагаемом материале, резко увеличивает интенсивность мыслительной деятельности, способствует более активному и глубокому запоминанию. Вот как выглядит изложение той же темы “Понятие функции” в соответствии с дедуктивным подходом:

1. Зависимости одной переменной от другой называют функциональными зависимостями.

2. Зависимость переменной у от переменной х называют функцией, если каждому значению х соответствует единственное значение у. При этом используют запись у = f (х).

3. Переменную х называют независимой переменной или аргументом, а переменную у - зависимой переменной. Говорят, что у является функцией от х.

4. Значение у, соответствующее заданному значению х, называют значением функции.

5. Все значения, которые принимает независимая переменная, образуют область определения функции; все значения, которые принимает зависимая переменная, образуют множество значений функции.

6. Для функции f приняты обозначения: D ( f ) -область определения функции, E ( f ) - множество значений функции, f (х0) - значение функции в точке х0.

7. Если D ( f ) Ì R и E ( f ) Ì R, то функцию называют числовой.

8. Элементы множества D ( f ) также называют значениями аргумента, а соответствующие им элементы E ( f ) - значениями функции.

9. Если функция задана формулой и область определения функции не указана, то считают, что область определения состоит из всех значений независимой переменной, при которых эта формула имеет смысл.

10. Графиком функции называют множество всех точек, абсциссы которых равны значениям аргумента, а ординаты - соответствующим значениям функции.

         Затем, на следующих уроках, происходит детальный разбор этого материала при активной работе учащихся. Тщательно рассматриваются все определения, прорешиваются примеры - идет усвоение нового материала.

         Рассмотренные выше подходы к изучению функций в школе не охватывают все многообразие способов и методов изучения этого понятия. Они лишь являются основными, наиболее разработанными подходами к вопросу об изучении функций в школе, ориентируясь на которые можно разрабатывать новые, специфические методы обучения, которые были бы лишены недостатков вышеперечисленных подходов и были бы следующим шагом в деле обучения математике в школе.

ИССЛЕДОВАНИЕ ФУНКЦИЙ С ПОМОЩЬЮ ЭВМ

         История алгебры насчитывает не одну тысячу лет, и все открытия и достижения в этой области человеческого знания были получены только с помощью тяжелого умственного труда, не в последнюю очередь связанного с огромным объемом вычислений, которые приходилось производить, часто неоднократно, для получения желаемых результатов. Многим известным математикам, от древности и вплоть до нашего века, приходилось содержать целый штат вычислителей, которые выполняли огромный объем второстепенных вычислений, давая возможность ученому заниматься непосредственно развитием математической науки.

         С развитием математических представлений об окружающем мире многие расчеты и вычисления многократно усложнились, так что целые коллективы вычислителей тратили иногда не один месяц на выполнение каких-либо расчетов. К тому же с усложнением вычислений неизбежно увеличивалось количество непроизвольно допущенных ошибок.

         Счастливым выходом из создавшегося положения явилось изобретение в 1943 г. первой электронно-вычислительной машины. Существовавшие до этого механические вычислители, которые могли выполнять только четыре арифметические операции, не шли ни в какое сравнение с этой, пусть еще не совершенной, вычислительной техникой. Сразу же после прохождения лабораторных испытаний электронно-вычислительные машины (ЭВМ), были применены для научных расчетов в квантовой и ядерной физике. В дальнейшем, по мере развития электроники, каждый научно-исследовательский институт обзаводился собственной ЭВМ. Уже в самом начале своего применения они обеспечивали неслыханную по тем временам скорость вычислений - несколько тысяч операций в секунду. Это позволило многократно увеличить скорость и точность математических вычислений и подняло труд ученых на качественно новый уровень.

         Современные ЭВМ оставили далеко позади те первые, построенные на реле и лампах, машины; в миллион раз производительнее, они позволяют выполнять невероятно сложные расчеты в фантастически короткие сроки: то, над чем сотни вычислителей работали бы несколько месяцев, эти машины способны вычислить за несколько минут.

         Учитывая вышесказанное, необыкновенно логичным кажется применение компьютеров для исследования свойств функций. Что и было сделано несколько десятилетий назад. Естественно, для успешного исследования свойств функций потребовался мощный математический аппарат. Наиболее успешным оказался перенос на компьютерную основу методов Лагранжа, Ньютона, Котеса, Симпсона и многих других. За считанные годы компьютер научили строить графики функций, дифференцировать и интегрировать сами функции, кроме этого интерполировать и экстраполировать функции, решать линейные и дифференциальные уравнения и их системы, находить приближающие функции и множество других, не менее важных вещей.

         Взять к примеру интерполяционный многочлен Лагранжа. Очень часто на практике имеется какая-либо функциональная последовательность не выраженная в аналитической форме, либо вообще выраженная только графиком или набором пар значений. А требуется получить аналитическое выражение описывающее данный график или таблицу. Имея несколько пар значений функции - узлов интерполирования, задача найти интерполирующую функцию представляется длительной и трудоемкой, имея же несколько сотен таких узлов - практически невыполнимой. Компьютер же справляется с этой задачей за считанные секунды.

         Пусть известные значения некоторой функции f образуют следующую таблицу:

                              ¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾

                               х               х0           х1          ...          хn

                              ¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾

                               f (х)            у0           у1          ...          уn

                              ¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾

         При этом требуется получить значение функции f для такого значения аргумента х, которое входит в отрезок [ х0 ; хn ], но не совпадает ни с одним из значений х i ( i = 0, 1, ..., n ).

         Очевидный прием решения этой задачи - вычислить значение f (х), воспользовавшись аналитическим выражением функции f. Этот прием однако, можно применить лишь в случае, когда аналитическое выражение f пригодно для вычислений. Более того, как уже упоминалось выше, часто аналитическое выражение функции f вовсе не известно. В этих случаях как раз и применяется построение по исходной таблице приближающей функции F, которая в некотором смысле близка к функции f и аналитическим выражением которой можно воспользоваться для вычислений, считая приближенно, что

f (x) = F (x).                                              (1)

         Классический подход к решению задачи построения приближающей функции основывается на требовании строгого совпадения значений f (x) и F (x) в точках хi ( i = 0, 1, 2, ..., n), т.е.

F (x0) = y0, F (x1) = y1, ..., F (xn) = yn.                           (2)

         Будем искать интерполирующую функцию F (x) в виде многочлена степени n:

Pn (x) = a0xn + a1xn-1 + ... +an-1x + an.                           (3)

Этот многочлен имеет n+1 коэффициент. Естественно предполагать, что n+1 условия (2), наложенные на многочлен, позволят однозначно определить его коэффициенты. Действительно, требуя для Pn (x) выполнения условий (2), получаем систему n+1 уравнений с n+1 неизвестными:

                                                            n

å ak xi n - k = yi (i = 0, 1, ..., n).                                 (4)

                                                          k=0

         Решая эту систему относительно неизвестных а1, а2, ..., аn, мы и получим аналитическое выражение полинома (3). Система (4) всегда имеет единственное решение, так как ее определитель, известный как определитель Вандермонда, отличен от нуля. Отсюда следует, что интерполяционный многочлен Pn(x) для функции f, заданной таблично, существует и единственен.

         Чтобы написать программу, реализующую этот алгоритм, необходимо затратить от нескольких часов до нескольких дней. А потом, она поможет сэкономить многие и многие месяцы, ушедшие бы на выполнения однотипных арифметических операций для вычисления интерполяционных полиномов.

ЗАКЛЮЧЕНИЕ

 

         Область применения электронно-вычислительных машин в наше время необычайно широка, и продолжает расширяться. Она не ограничивается только лишь исследованием функций или математических объектов произвольной природы вообще. Сфера применения компьютерной техники в науке гораздо шире и начинает охватывать те области знания, к которых раньше даже и не мыслилась. Процесс этот необратим, и скоро компьютер станет главным, но далеко не единственным инструментом ученого в его научной работе. Однако, не верно было бы думать, что с возрастанием роли компьютеров в научном познании роль человека будет неуклонно снижаться до уровня обслуживающего персонала. Человек всегда был и будет ведущим в связке человек-компьютер. Научный поиск - процесс творческий, а компьютеры этого не умеют, и научаться еще очень не скоро.

Список использованной литературы:

1. И. П. Натансон, Теория функций вещественной переменной,

    Москва, Наука, 1974 г.

2. В. С. Крамор, Повторяем и систематизируем школьный курс

    алгебры и начал анализа, Москва, Просвещение, 1990 г.

3. К. А. Рыбников, Возникновение и развитие математической

    науки, Москва, Просвещение, 1987 г.

4. Н. И. Борисов, Как обучать математике, Москва, Просвещение,

    1979 г.

5. Г. И. Глейзер, История математики в школе, IX-X классы,

    Москва, Просвещение, 1983 г.

6. Л. С. Понтрягин, Математический анализ для школьников,

    Москва, Наука, 1983 г.

7. Ю. С. Богданов, Н. В. Пыжкова, Л. П. Черенкова, Начала

    анализа функций двух переменных в наглядном изложении,

    Минск, Вышэйшая школа, 1987 г.

8. С.Г. Крейн, В. Н. Ушаков, Математический анализ элементарных

    функций, Москва, Наука, 1966 г.

9. О. Г. Омельяновский, Диалектика в науках о неживой природе,

    Москва, Мысль, 1964 г.


Страницы: 1, 2