рефераты

рефераты

 
 
рефераты рефераты

Меню

Дипломная работа: Цивилизация богов. Прогноз развития науки и техники в 21-м столетии рефераты

Планомерное изучение генома человека продолжалось во всех странах мира. Этот процесс перешел в организованную, упорядоченную стадию. Не было более революционных прорывов на этом направлении, просто сотни тысяч и миллионы ученых скрупулезно, шаг за шагом складывали все новые кусочки генетической мозаики, за которыми реально просматривалась стройная картина функционирования человеческого генома. В прошлом осталась эйфория первых успехов и открытий, теперь исследовательский процесс шел безостановочно в тиши лабораторий и институтов, ежечасно отображая новые достижения и наработки путем совершенствования компьютерных моделей клеток, органов, целостных организмов, пополняя, таким образом, общедоступные базы данных. Геном человека являлся достоянием всего человечества, и давно уже информация об устройстве и механизмах его функционирования стала открытой и общедоступной для ученых и любителей всего мира, за небольшим исключением по причине безопасности. Экспериментальной информации было накоплено и систематизировано чрезвычайно много.

Анализ накопленной информации позволил полностью понять механизмы формообразования человеческого организма, реализуемые через последовательную активизацию так называемых «архитектурных генов». Стали понятными процессы роста и развития человеческого организма от момента первого деления оплодотворенной яйцеклетки до стадии половой зрелости, включая механизмы пространственной организации клеток, тканей, органов, механизмы дифференциации клеток, а также механизмы последовательного включения тех либо иных генов и групп генов. Были составлены полные маршрутные карты общего вида «ген – белок – признак», которые содержали информацию разной степени сложности о подчиненности и взаимоотношениях генов, белков и признаков между собой.

Близилась к завершению гигантская работа по составлению полного списка маршрутных карт типа «ген – белок – биохимическая реакция». Итогом этой работы виделось создание единой карты всех метаболических реакций человеческого организма. Последовательности «белок – биохимическая реакция» после расшифровки состыковывались между собой, выстраивались в длинные ветвящиеся цепи. При этом наглядно отображались механизмы сложных процессов и функций, присущие живым клеткам и тканям человека. Такие сложные цепи, переплетаясь между собой, отображали в табличном либо виртуальном трехмерном виде пока еще не полную единую карту всех метаболических реакций человеческого организма.

Единая карта метаболических реакций с каждым днем становилась все более полной, точной и всеобъемлющей. К концу десятилетия в ней нашли свое отображение около двухсот пятидесяти тысяч биохимических реакций, присущих человеческому организму, как на протяжении всего срока существования, так и в определенные периоды его развития. В этом всеобъемлющем научном исследовании нашлось место и для полумиллиона различных видов белков, вырабатываемых в организме человека, чьи функции и устройство были определены к этому времени. Изучение сотен тысяч белков, которые остались пока неисследованными, успешно продолжалось учеными многих странах мира в рамках программы «Белок человека». Трудности при изучении белков, связанные с их малым количеством, кратковременностью существования внутри клетки, необходимостью изучать поведение белковых молекул непосредственно в живой клетке, а также неоднозначным взаимодействием с другими веществами, успешно преодолевались. Шаг за шагом ученые раскрывали тайны строения белковых молекул, нюансы их поведения в биохимических реакциях.

Систематизация полученных наукой знаний позволила приступить к созданию компьютерной модели метаболизма человеческого организма, отображающей полный перечень свойственных человеческому организму жизнеобеспечивающих реакций. Несмотря на недостаток знаний о строении и функциях полумиллиона различных белков человеческого организма было вполне реально и весьма заманчиво изложить их функции и строение в приближенном виде, чтобы получить готовый инструмент для дальнейших исследований. Однако ученые пошли по пути создания компьютерной модели, построенной исключительно на достоверных, проверенных и подтвержденных фактах. Подобные факты формировали фундамент, на котором строились, проверялись и оттачивались новые теории и гипотезы, а также уточнялись ранее полученные знания и представления.

Создаваемая компьютерная модель метаболизма человеческого организма стала наиболее полной и ежеминутно обновляемой базой данных, которая в режиме реального времени пополнялась информацией, полученной в ходе реализации программ «Белок человека» и «Геном человека». Данная модель, хотя и не была достаточно полной, поскольку не учитывала все присущие человеческому организму белки и биохимические реакции, все же давала достаточно подробное представление о тонкостях основных метаболических процессов в клетках, тканях и органах человека. Важной особенностью компьютерной модели стала ее способность представить метаболические процессы в человеческом организме и строение белковых молекул в виде объемного виртуального изображения. Если выражаться просто, многое в строении и функционировании человеческого организма было уже изучено и понято. Информация о функциях и структуре неизученных белков, о предназначении неисследованных метаболических реакций, имела для ученых второстепенное значение, поскольку затрагивала процессы, признаки и реакции, не угрожающие человеческому организму гибелью. Существующие белые пятна, конечно же, требовали самого тщательного изучения, но даже при отсутствии этих знаний уже сегодня можно было успешно использовать возможности компьютерной модели метаболизма человеческого организма для продвижения вперед в медицине, фармацевтике, геронтологии и других науках.

Для координации усилий мировой научной общественности по совершенствованию и пополнению базовой компьютерной модели был создан на территории объединенной Европы научный центр, в котором трудились сотни специалистов различного профиля из многих стран. К сожалению, созданная компьютерная модель не могла пока работать в интерактивном режиме, что затрудняло работу ученых по доводке гипотез и предположений в режиме реального времени. Ввод новых знаний в базу данных осуществлялся как автоматически в соответствии с алгоритмами программного обеспечения, так и непосредственно специалистами в случаях, не предусмотренных компьютерными программами. Все новые знания подвергались тщательному анализу на предмет состыковки с уже имеющимися данными. Процесс анализа новых данных осуществлялся специальной рабочей группой, состоявшей из представителей разных наук. Эта группа также производила необходимые корректировки компьютерной модели при поступлении новых данных, с периодичностью один раз в неделю, и чаще, в случае какого-либо серьезного прорыва на одном из научных участков.

Все научные учреждения мира имели равные права на пользование базовой компьютерной моделью метаболизма человеческого организма для решения собственных задач. Сверхмощные компьютеры и высокоскоростные информационные магистрали позволяли делать это быстро и из любой части мира. Специальная служба безопасности осуществляла контроль над чистотой экспериментов при использовании базовой компьютерной модели. Любые попытки разрабатывать на ней генетическое, цитологическое, биохимическое оружие пресекались на корню, как службой безопасности, так и встроенными охранными программами.

К концу десятилетия закончилась кропотливая работа по сопоставлению человеческих генов и групп генов кодируемым ими признакам, белкам и биохимическим реакциям. За время исследований при расшифровке и сопоставлении генов и кодируемых ими признаков, белков и биохимических реакций был использован обширный материал, насчитывающий более пятидесяти тысяч индивидуальных геномов. Генетический материал для исследований подбирался по критериям максимальной несхожести геномов между собой, поэтому исследовательские работы закончились получением достоверных результатов. При отборе геномов, которые должны были достоверно представлять весь генофонд человечества, учитывались генеалогические нюансы, место проживания, профессиональная деятельность, расовая принадлежность, возраст людей, предоставивших наследственный материал. Результаты компьютерного анализа наследственной информации позволили выделить группу генов, ответственных за наиболее удачные проявления признаков человеческого организма, которые легли в основу компьютерной модели эталонного генома человека. Эта модель вобрала в себя все «лучшие» гены, найденные за годы исследований индивидуальных геномов и имела огромное значение для будущего всего человечества. Например, ребенок, появившийся на свет с таким эталонным геномом, от рождения будет иметь преимущества перед другими детьми, никогда не будет болеть, и будет иметь резервы «мощности» всех систем организма, в несколько раз большие, чем среднестатистический человек. Реальное рождение человека, имеющего эталонный набор генов, явилось бы важным шагом на пути эволюции человека, новым этапом в развитии человечества, определенным не самой Природой, но подготовленным мощью человеческого разума.

Однако теоретическая возможность создания в недалеком будущем совершенного человека (на базе эталонного генома) особенно никого в мире не взволновала и не воодушевила. Данная тема была интересна и актуальна сегодня. Завтрашний день многие преимущества совершенного, эталонного человека делал несущественными. При всех своих замечательных физических и морфологических признаках человек с эталонным набором генов не являлся фактором, кардинально влияющим на эволюцию человеческого общества. Запрограммированный генетически срок человеческой жизни в 110-120 лет, мог стать реальностью уже сегодня, и достичь этого можно было относительно несложными медицинскими средствами и технологиями. Перспектива для своих детей иметь здоровые органы в пожилом возрасте не волновала всерьез сегодняшних родителей, которые жили в мире, где замена изношенных органов и тканей была повседневной реальностью. Понимание механизмов реализации генетических программ, которое навсегда убрало завесу тайны над волшебством преобразования двух слившихся воедино клеток в мыслящего индивидуума, сделало современного человека более уверенным в собственных силах.

Потенциал лучших наработок эволюции, реализуемый в геноме совершенного человека, хотя и был значительным, все же имел свой предел, не слишком превосходящий предел возможностей среднестатистического человека. Многие ученые, философы и просто мыслящие люди, считали, что использование в близком будущем естественных эталонных генов для выращивания нового поколения неоправданно, что задачи, которые ставит перед собой и решает цивилизация, должны быть масштабнее и сложнее. Не увеличение продолжительности жизни до 120-150 лет, а увеличение срока активного долголетия до 500-1000 лет, такая задача должна решаться уже сегодня. Не повышение резервов организма и ресурсов органов на тридцать- пятьдесят процентов, а создание новых органов и систем, обеспечивающих жизнедеятельность в широком диапазоне условий окружающей среды. Не повышение коэффициента полезного действия пищеварительной системы при переработке пищи, а использование других видов энергии, помимо энергии химических связей.

Одним словом, речь шла об улучшении человека, как вида не путем постепенных эволюционных преобразований, а путем активного использования знаний и передовых технологий. Сама возможность подобного варианта развития событий нашла во всем мире, как сторонников, так и противников. Дискуссии на эту тему стали неотъемлемым атрибутом общественных и научных форумов, а также предметом длительных обсуждений в политических и государственных институтах. Мировые религиозные организации также присоединились к дискуссиям о путях эволюции человека, и мнения их по этому поводу также разделились.

На фоне происходящих в мире дискуссий появление компьютерной модели эталонного генома человека не произвело заметного ажиотажа. Новая модель заняла подобающее ей место как составная часть базовой компьютерной модели метаболизма человеческого организма, наиболее полной и обширной из существующих моделей. Надлежащее место в базовой модели также заняли другие существующие компьютерные модели специализированных клеток человека, некоторых клеток животных, а также компьютерные модели функциональных тканей, органов, систем и подсистем человека.

К этому времени весь мир перешел на единые стандарты программного обеспечения для компьютерного моделирования. Это позволило без проблем состыковывать воедино разрозненные модели различной степени детализации, разрабатываемые в различных странах и ориентированные на использование специалистами различных направлений. Семейство компьютерных моделей животных и растительных клеток было представлено несколькими достаточно полными моделями, разработанными учеными США, Японии, Европы, Китая и России.

Наиболее полной и завершенной являлась разработанная в США компьютерная модель нервной клетки мозга человека. Уровень детализации компонентов и структурных составляющих нервной клетки в данной компьютерной модели был чрезвычайно высок. Все клеточные структуры и процессы в этой модели были разработаны с детализацией на уровне молекул, а наиболее ответственные и важные из них на уровне отдельных атомов. Высокий уровень изученности компонентов нервной клетки и хорошая детализация позволили реализовать в компьютерной модели опции интерактивности и автоматической настройки. После воздействия на модель возмущающего фактора, которым мог быть ввод новых данных либо проверка теоретических представлений, она переходила в новое, адекватное вмешательству, состояние. Например, после введения в компьютерную модель нервной клетки мозга человека виртуального химического соединения, можно было визуально получить ответ на вопрос: «Является ли данное химическое соединение нейтральным, улучшает или ухудшает процессы, происходящие во время передачи сигнала между нейронами?».

После ввода информации суперкомпьютер начинал расчет вариантов взаимодействия виртуального химического соединения со всеми способными к реакции химическими соединениями, принимающими участие в моделируемом процессе. При этом взаимодействие молекул и атомов химических соединений рассматривалось как взаимодействие поверхностей потенциальной энергии. Образующаяся при взаимодействии двух поверхностей потенциальной энергии новая интегральная поверхность задавала структуру всех возможных химических соединений, чье строение вписывалось в такую поверхность. Невозможность получения интегральной поверхности потенциальной энергии указывала на невозможность осуществления химической реакции между данными химическими соединениями. После определения потенциально возможных продуктов химических реакций, тут же автоматически отображаемых в виде распределенных в пространстве структур, которые могли образоваться при взаимодействии исследуемого химического соединения со всеми способными к реакции клеточными компонентами, процедура поиска ответа продолжалась. Такой перечень возможных продуктов химических реакций принято было называть перечнем первого рода.

Вновь образованные химические соединения также проверялись на предмет химического взаимодействия со всеми, имеющимися в оперативном пространстве химическими соединениями и способными к реакции клеточными компонентами и между собой. Итогом второго этапа компьютерного анализа являлся новый перечень потенциально возможных химических соединений, то есть перечень второго рода. В дальнейшем, в зависимости от принятой глубины исследования поставленной задачи, для нахождения ответа необходимой степени точности могли проводиться дополнительные этапы анализа.

Все случаи получения новых интегральных поверхностей потенциальной энергии (продукты химического реагирования исследуемых соединений) изучались на предмет их дальнейшего участия во всей цепочке метаболических реакций моделируемого процесса. В нашем примере ответом на поставленный вопрос являлось виртуальное изображение возможных реакций активных химических соединений и мембранных белков, контролирующих возбудимость нервной клетки и обеспечивающих генерацию и передачу нервных импульсов между нейронами. Анализируя последовательность таких изображений, легко сделать выводы о характере влияния исследуемого химического соединения на процессы, происходящие в момент передачи сигналов между нейронами.

Основанный на квантовой теории способ моделирования химических реакций, при котором анализу подвергались взаимоотношения между ядрами и электронами, являлся самым точным из используемых способов моделирования. Однако данный способ требовал использования компьютеров огромной мощности и применялся в особо ответственных случаях. Для этих целей, как правило, задействовались компьютерные ресурсы суммарной мощностью не менее десяти миллионов Терафлоп. При всей своей сложности задачи моделирования взаимодействия двух и более сложных химических соединений успешно решались на практике. В этом была заслуга не только разработчиков и производителей суперкомпьютеров. Количество операций в секунду, которое требовалось для расчета взаимодействия двух относительно простых белковых молекул, было астрономическим и не могло быть достигнуто в ближайшем будущем экстенсивным путем наращивания мощности суперкомпьютеров.

Основная заслуга в повышении эффективности суперкомпьютеров при решении задач повышенной сложности принадлежала разработчикам программного обеспечения. Именно совершенное программное обеспечение отсекало те сотни и тысячи миллиардов тупиковых вариантов и бесполезных операций, которые только занимали машинное время, и позволяло отделять в режиме реального времени зерна от плевел. При этом в технологиях компьютерного моделирования огромную роль играл опыт разработки прежних компьютерных моделей. Ничто существенное в мире программирования не пропадало бесследно, а служило дальнейшему прогрессу науки. К тому же при компьютерном моделировании взаимодействия разных химических соединений число комбинаций реагирующих веществ, было хотя и очень велико, но все же конечно. Количество потенциально полезных вариантов составляло весьма малую часть от всех теоретически возможных. При этом особое значение имело создание базы данных, содержащей информацию о свойствах важнейших для человечества химических и биохимических соединений, отображенных в универсальном виде, подходящем для использования в технологиях компьютерного моделирования. На практике это означало, что плановый перевод свойств химических соединений в электронную форму, который значительно ускорит и облегчит процессы разнообразного компьютерного моделирования, становился одной из главных точек приложения усилий ученых различных специальностей.

Страницы: 1, 2, 3, 4, 5, 6, 7