рефераты

рефераты

 
 
рефераты рефераты

Меню

Выделение, изучение свойств микроорганизмов и их использование для выполнения подготовительных процессов переработки овчинно-мехового сырья рефераты

В последние годы много внимания уделяется изучению путей микробного метаболизма анионных ПАВ, а также выделению и исследованию ферментов, ответственных за их разрушение. Показано /65/, что углеводородные радикалы алкилсульфатов, алкилсульфонатов и алкилбензолсульфонатов окисляются в тех же биохимических реакциях, что и углеводороды, жирные кислоты и спирты. Пути микробной деструкции алкилбензолсульфонатов включают также реакции расщепления бензольного кольца.

АБС более устойчивы к разложению и, поскольку они количественно преобладают в общем объеме продукции ПАВ, их метаболизм изучен детальнее. Основными биохимическими реакциями, ведущими к разрыву связей С-С, в результате чего разрушается молекула АБС, являются w-окисление, т.е. окисление терминальной метильной группы в алкильной цепи, a-окисление, b-окисление и деструкция бензольного кольца при помощи механизмов орто- или мета-расщепления. w-Окисление алкильного радикала происходит аналогично разложению прямоцепочечных углеводородов через образование спирта и альдегида до карбоксикислоты:

– СН2-СН3 ® – СН2-СН2ОН ® – СН2-СНО ® – СН2-СООН.

При a-окислении алкильная цепь прогрессивно укорачивается на один атом углерода, который выделяется в виде СО2. b-Окисление ведет к последовательному уменьшению алкильной цепи на два атома углерода сразу.

Хейман и Молоф исследовали способность выделенной Пейном с сотрудниками /66/ культуры Pseudomonas С 12В метабилизировать линейные первичные и вторичные алкилбензолсульфонаты с различной длиной улеводородной цепи. Культура разрушала АБС с короткими 1- и 2-углеродными алкильными цепями. АБС с длинной (С3-С12) цепью начинали разлагаться только после предварительной инкубации бактерий со спиртами, альдегидами или кислотами, как с соответствующим числом атомов углерода, так и с более длинной цепью. Авторы предполагают, что для разложения АБС с длинной алкильной цепью необходима предварительная индукция соответствующих ферментов соединениями, близкими по структуре к изучаемым АБС, но не содержащими кольца. Бактериальная деструкция АБС происходит в результате ряда биохимических реакций: w-окисления, b-окисления, вторичного w-окисления, a-окисления, неполного b-окисления и декарбоксилирования, которые приводят к образованию бензойной или фенилуксусной кислоты. Причем АБС с нечетным числом углеродных атомов в алкильной цепи метаболизируется через бензойную, а с четным – через фенилуксусную кислоту. Вещества с четным числом атомов углерода индуцируют путь бензойной кислоты, с нечетным – оба пути. Дальнейшее разрушение бензойной и фенилуксусной кислот происходит с разрывом кольца.

Неионогенные ПАВ еще более разнообразны по своей химической структуре, чем анионные. Они представляют собой продукты присоединения окиси этилена к веществам, содержащим активный водород, например, к алкилфенолам, жирным спиртам, меркаптанам и др. Практически любое соединение, молекула которого наряду с гидрофобным радикалом содержит карбоксильную, гидроксильную, амидную или аминную группу с подвижным атомом водорода, может реагировать с окисью этилена, образуя неионогенное ПАВ. Гидрофильную группу в молекуле НПАВ могут образовывать, помимо окиси этилена, и другие соединения. Так, довольно широко применяются НПАВ – сложные эфиры маннита и сорбита, которые называют соответственно маннитаны и сорбитаны или спаны. Оксиэтилированные эфиры сорбита и маннита нашли распространение под названием «твины». Хорошо известны НПАВ, в состав которых, наряду с окисью этилена, входят остатки окиси пропилена – так называемые блок-сополимеры. Разнообразие химического строения НПАВ создает трудности при анализе этих веществ и приводит к получению весьма противоречивых результатов при изучении биоразлагаемости /67/.

Сведения о биодеградации НПАВ получены в основном в опытах с комплексными биоценозами – водными микроорганизмами, активным илом, биопленками. Так, Каплин и соавторы /68/ изучали скорость распада в природной воде оксиэтилированных синтетических жирных спиртов, алкилфенолов, блок-сополимера окисей этилена и пропилена в концентрациях 1–10 мг/л. Оксиэтилированные жирные спирты в водоемах распадаются быстро, медленнее распадается блок-сополимер и еще медленнее – оксиэтилированные алкилфенолы. Скорость распада изучаемых веществ зависит от их исходной концентрации и количества оксиэтильных групп. Оксиэтилированный алкилфенол с десятью оксиэтильными группами в концентрации 1 мг/л разрушается полностью на 49-е сутки, а при концентрации 10 мг/л на 174-е сутки остается еще 37% неразрушенного вещества. Оксиэтилированный алкилфенол (семь оксиэтильных групп) в концентрации 1 мг/л деградирует на 139-е сутки, к тому же времени распад 10 мг/л происходит на 72%.

В работах Трифоновой Т.В. с сотрудниками /69/ приводятся данные о биоразложении продуктов присоединения смеси окиси этилена и окиси пропилена к первичным жирным спиртам. Исследователи изучали продукт оксиалкилирования синтетических первичных спиртов фракции С10-С13 (около 10% спиртов изостроения), содержащий в среднем 8 оксиалкиленовых групп, а также продукт оксиалкилирования н-додецилового спирта, содержащий в среднем 10 оксиалкиленовых групп. Разрушение с помощью активного ила происходит на 92–99%. Степень удаления НПАВ из сточных вод зависит от степени адаптации активного ила. Так, вещество почти полностью разлагается адаптированным активным илом за 6 ч, в то время как неадаптированный активный ил за это же время удаляет из стока лишь 43% НПАВ.

Таким образом, можно заключить, что скорость окисления НПАВ зависит от их химического строения, т.е. от длины и степени разветвленности алкильной цепи и от длины полиэтиленгликолевой цепи. Наиболее полно и быстро разрушаются соединения, полученные на основе нормальных первичных и вторичных спиртов, алкильная цепь которых содержит более 7 атомов углерода, а полиоксиэтиленовая – не более 10–12 молей окиси этилена. Недостаточно полно окисляются прямоцепочечные алкилфенолы, так как на скорость деструкции влияет ароматическое кольцо. Наиболее устойчивыми к биоразрушению являются оксиэтилированные алкилфенолы, с количеством оксиэтильных групп более 10. Положение фенольного кольца в прямой алкильной цепи оказывает большое влияние на скорость деградации. Деструкция неионогенных поверхностно-активных веществ происходит в два этапа: 1) карбоксилирование конечной метильной группы с последующим b-окислением и 2) гидролиз полиэтиленгликолевой цепи. При этом образуются следующие типы молекул: 1) с неповрежденной гидрофобной и деградированной полиэтиленгликолевой цепями; 2) с карбоксилированной гидрофобной и ненарушенной полиоксиэтиленовой цепями; 3) с карбоксилированной гидрофобной и деградированной полиоксиэтиленовой цепями.

При разрушении гидрофильной цепи образуются этиленгликоли, которые в свою очередь разлагаются микроорганизмами до углекислоты и воды. Этиленгликоль может разлагаться уксусными бактериями Gluconobacter melanogenus, Acetobacter ascedens, A. аceti, A. рasteurianum, использующими его в качестве источника углерода. При окислении гликолей уксусными бактериями образуется гликолевый альдегид, а затем гликолевая кислота /70/.

Таким образом, накопившееся в последние годы данные о биоразлагаемости ПАВ свидетельствуют о необходимости, с одной стороны, синтеза и внедрения в производство легко биоразрушаемых соединений, а с другой – разработки новых интенсивных методов очистки вода от ПАВ. Эти методы должны основываться на использовании специально полученных высокоактивных чистых культур микроорганизмов, деструкторов ПАВ. Применение таких культур в микробном методе очистки будет способствовать защите водоемов от загрязнения синтетическими соединениями и сохранению окружающей человека природы.


Заключение


В работе проведен анализ литературных источников по теме: «Механизм воздействия прокариотических микроорганизмов на СПАВ и липазу». Показана способность микроорганизмов расщеплять синтетические поверхностно-активные вещества, которые, в свою очередь взаимодействуют с различными компонентами клеточных стенок бактерий, включая муреиновый слой, белки, липиды, липопротеины, липополисахариды. Изучена возможность микроорганизмов продуцировать внеклеточные ферменты (липазы).

В работе исследовались синтетические поверхностно-активные вещества и культуры микроорганизмов, возможность проведения с их помощью процесса обезжиривания меховой овчины.

Выделено 6 микробных культур из сточных вод после эмульсионного процесса обезжиривания. Изучены и описаны их морфологические особенности, физиологические и культуральные свойства. Проведена селективная адаптация выделенных микробных продуцентов на средах, содержащих оливковое масло, шерстный жир и СПАВ.

На основе результатов исследования липолитической и протеолитической активностей были отобраны культуры рода Listeria sp 3, Listeria sp 7, Listeria sp I'.

Разработана принципиальная технологическая схема получения концентрированного ферментного препарата, основанная на применении культур 3, 7, I' с использованием синтетической среды, включающей минеральные соли, шерстный жир и синтетические поверхностно-активные вещества. Данный метод культивирования позволяет получать микроорганизмы с заданными свойствами, способными деструктировать жировые вещества и СПАВ.

Разработана технология, основанная на совмещении микробиологического и эмульсионного обезжиривания меховой овчины, она исключает использование карбоната натрия и формальдегида, а также уменьшает расход СПАВ в 16 раз, что позволяет снизить уровень токсического загрязнения сточных вод.


Список использованных источников


1. Асонов Н.Р. Микробиология.-М.: Агропромиздат, 1982. – 351 с.

2. Шульговская Е.М., Иванова И.И. Состав клеток Pseudomonas при разных условиях культивирования // Микробиология, 1975, т. 44, №6. – С. 1022–1024.

3. Ребиндер П.А. Поверхностно-активные вещества. – М.: Знание, 1961. – 45 с.

4. Ксандопуло Г.Б., Рубан Е.Л. Биологическое действие ПАВ на микроорганизмы // Микробиологическая промышленность. – 1971, N6. – С. 60–66.

5. Елисеев С.А. и др. О механизме действия поверхностно-активных веществ на бактериальные клетки/ Елисеев С.А., Снежко И.А., Шульга А.Н./ МГУ. Биол. Фак. – М, 1984. – С. 4–7.

6. Турковская О.В. Микробиологическая деструкция НПАВ. Дис. Канд. биол. наук. – Саратов: Мед. институт, 1989. – 173 с.

7. Гельман Н.С. Изучение структуры биологических мембран при помощи фрагментации детергентами // Успехи соврем. биологии. – 1969. – Т.69, №1. – С. 3–18.

8. Богач П.Г. и др. Структура и функции биологических мембран/ Богач П.Г., Курский М.Д., Кучеренко Н.Е. – Киев: Вища шк., 1981. – 361 с.

9. Лишко Б.И., Шевченко М.И. Мембраны и жизнь клетки. – Киев: Наук. Думка, 1987. – 104 с.

10. Сим Э. Биохимия мембран. – М.: Мир, 1985. – 109 с.

11. Удилова О.Ф., Кривец И.А. Действие додецилсульфата натрия на оптическую плотность и выживаемость Pseudomonas aeruginosa – деструктора алкилсульфатов // Микробиол. Журнал, 1982, т. 45, №1. – С. 13–15.

12. Мартинек К. И др. Мицеллярная энзимология/ Мартинек К., Левашов А.В., Клячко М.Н. // Биологические мембраны. – 1985, т. 2, N7. – С. 669–695.

13. Ставская С.С. Биологическое разрушение анионных ПАВ. – Киев: Наук. думка, 1981. – 116 с.

14. Мэдди Э., Данн М. Солюбилизация мембран // Биохимическое исследование мембран. – М.: Мир, 1979. – С. 160–173.

15. Ротмистров М.Н. и др. Разрушение алкилсульфатов бактериями/ Ротмистров М.Н., Ставская С.С., Кривец И.А. // Микробиология, 1978, т. 47, N2. – С. 338–341.

16. Wachi Y., Yanagi M. Decomposition of surface active agents by bacteria siolated from deonized water. – J. Soc. Cosmet. Chem., 1980, vol. 31, №2, pp. 67–81/

17. Хотенов Д.А. Влияние ПАВ на микроорганизмы // Водные экосистемы и организмы: Материалы научной конференции. – М, 2000. – С. 85.

18. Ставская С.С. и др. Изучение продуктов разложения додецилсульфата натрия/ Ставская С.С., Кривец И.А., Самойленко Л.С. // Прикл. биохимия и микробиология, 1979, т. 15, №5. – С. 790–792.

19. Кучер Р.В. и др. Комплексное влияние поверхностно-активных веществ на процесс микробиологического окисления углеводородов/ Кучер Р.В., Дзумедзей Н.В., Хмельницкая Д.Л. // Микробиология. – 1981, т. 50, №6. – С. 1105–1108.

20. Панченко Л.В. и др. Выделение и изучение микроорганизмов – деструкторов ПАВ/ Панченко Л.В., турковская О.В., Шуб Г.М. // Микробиология. – 1981, т. 50, N6. – С. 217–222.

21. Биология и биотехнология микроорганизмов/ Под ред. Халмурадова А.Г. – Ташкент: Фак, 1992. – 220 с.

22. Литовченко П.П. Электронно-микроскопические исследования бактерии Pseudomonas // Микробиологический журнал, 1977, т. 39, №5. – С. 639–645.

23. Geele G., Garett E. Spores VI P. Gerchardt H.L. Sadoff, Costilow R.W. Washington P.S., 1975, p. 391.

24. Мосолов В.В. Протеолитические ферменты. М., Наука, 1979. – 125 с.

25. Keay L., Wildi B.S. Biotechnol et biogen, 1985, 179 p.

26. Яковлева М.Б., Козельцев В.Л. Протеолиз коллагена некоторыми видами макромицетов и спорообразующих бактерий // Прикладная биохимия и микробиология. – 1994, т. 30, выпуск 1.-С. 121–127.

27. Kerjan P. Regulation de la sporulation microbienne. Colloq. Intern. CNRS, Paris, 1973, 96 p.

28. Чюрлис Т.К., Ужкуренас А.П. Химия протеолитических ферментов. Вильнюс, 1983. – 133 с.

29. Ерохина Л.И. Материалы Всесоюзного симпозиума по химии протеолитических ферментов. Вильнюс, 1983. – 95 с.

30. Chambliss G.H., Legault Demare L. Regulation de la sporulation microbienne. J-P. Aubert (Eds). Coloq. Intern. CNRS, Paris, 1983. – 227 p.

31. Цаплина И.А. Синтез протеазы термофильной бактерией Bacillus subtilis. Канд. дис. М., 1982.

32. Pazlarova J. Produkce amilazy v jednorazove a kontinnalni kultivaci Bacillus subtilis. Dissert. Praque, 1982.

33. Микельсаар П.Ч. и др. Зависимость синтеза внеклеточных протеаз от фазы роста у Pseudomonas fluorescens/ Микельсаар П.Ч., Вили Р.О., Лахт Т.И. // Микробиология, 1982, т. 51, №2. – С. 212–215.

34. Биосинтез микроорганизмами нуклеаз и протеаз. – М.: Наука, 1990. – 275 с.

35. Fencl J., Novak M. Prediction of the product formation in continuous cultivation of microorganisms. Dept. Techn. Microbiol. Inst. Microbiol. Czechosl. Acad. Sci., Prague, 1981.

36. Дачюлите Я.А. Химия протеолитических ферментов. Рига, 1983. – 138 с.

37. Мудерризаде А. и др. Очистка и характеристика щелочной протеиназы алкалофильного штамма Bacillus sp./ Мудерризаде А., Инсари Н.Я., Агюложу С. // Прикладная биохимия и микробиология, т. 37, №6. – С. 674–677.

38. Мотина Л.И. и др. Способ получения щелочной протеиназы/ Мотина Л.И., Нахапетян Л.А., Скворцов Г.Е./ Пат. №4460547/ 31–13. Опубл. 14.07.88.

39. Зефирова О.Н., Мамаева А.В., Чупов В.В. Получение и свойства препаратов щелочной протеазы // Прикладная биохимия и микробиология, т. 32, №5. – С. 510–513.

40. Recombinate microbial lipases for biotechnological applications/ Schmidt – Dannert Claudia // Bioorg. and Med. Chem. – 1999, №10. P. 2123–2130.

41. Давранов К. Микробные липазы в биотехнологии // Прикладная биохимия и микробиология, 1994, т. 30, №4–5. – С. 527–534.

42. Рубан Е.Л. Микробные липиды и липазы. М.: Наука, 1977. – 216 с.

43. Давранов К.Д. и др. Специфичность липаз мицелиальных грибов к типу сложноэфирных связей триглицеридов/ Давранов К.Д., Халамейзер В.В., Розмухамедова Б.Х. // Прикладная биохимия и микробиология, т. 32, №3, 1996. – С. 294–297.

44. Дженсон Р., Брокерхоф Х. Липолитические ферменты. М.: Мир, 1978. – 396 с.

45. Шеланова С.А., Жеребцов Н.А. Оптимизация условий биосинтеза липазы. Ферментная и спиртовая промышленность, 1984. – С. 24–28.

46. Свириденко Ю.Я., Уманский М.С. Питательная среда для культивирования липолитических ферментов. А.С. №745945, 1980. БИ №25.

47. Вецозола А.О., Бекер М.Е. Оптимизация состава Среды для биосинтеза липазы дрожжами Candida Paralipolytica. Рига, 1988. – 200 с.

48. Звягинцева И.С. Липазная активность некоторых дрожжей. – Микробиология, 1982, т. 41, №4. – С. 24–28.

49. Ota Y., Yamada K. Lipase from Candida Paralipolytica. Agr. Biol. Chem., 1979, vol. 30, №1. – P. 351–358.

50. Ota Y. Lipids and related substances inducing the lipase production by Candida Paralipolytica. Agr. Biol. Chem., 1979, vol. 32, №3. – P. 390–391.

51. Безбородов А.М. Биотехнология продуктов микробного синтеза. М.: Агропромиздат, 1991. – 238 с.

52. Корчагина Л.Н., Рудюк В.Ф., Чербанова В.Т. Липолитические ферменты для медицинских целей. 1987. Вып. 1. С. 26.

53. Определитель бактерий Берджи (в 2-х тт.)/ Под ред. Дж. Хоулта, Н. Крига, П. Смита, Дж. Стейли, С. Уильямма. – М.: Мир, 1997. – 432 с.

54. Макаров Г.В. и др. Охрана труда в химической промышленности/ Макаров Г.В., Ванин А.Я., Маринина Л.К. – М.: Химия, 1989. – 556 с.

55. Дроздова С.Г. Основы техники безопасности в микробиологии и вирусологических исследованиях. – М.: Медицина, 1987. – 63 с.

56. Долин П.А. Справочник по технике безопасности. – М.: Энергоатом-издат, 1984. – 556 с.

57. Печников В.Г., Якушев В.П. Влияние пенообразования в водоеме на процесс развития бактерий (E.coli). – В кн. Биофизические аспекты загрязнения биосферы. М., Наука, 1973. – С. 112–113.

58. Ротмiстров М.М. и др. Вплив синтетичних поверхнево-активних речовин на мiкроорганiзми i очистка стiчних вод/ Ротмiстров М.М., Ставьска С.С., Таранова Л.А. – Вiсн. АН УССР, 1974, №3. – С. 73–83.

59. Prochazka G.J., Payne W.J. Bacterial growth as practical indicator of extensive biodegradability of organic compounds. – Appl. Microbiol., 1975, 13, №5, p. 702–705.

60. Bogan R.H., Sawyer C.N. Biochemical degradation of synthetic detergents. I. Preliminary studies. – Sen. Ind. Wast., 1984, 26, №9. – P. 1069–1080.

61. Riesen von L. Studies on bacteria-surface active agent relationships. 2. Hydrolysis of ester linkages in anionic compounds by gramnegative species as shown by Nile-blue sulgate. – Trans. Kansas Acad. Sci., 1986, 59, №3, p. 333–338.

62. Ротмистров М.Н. и др. Быстрый метод обнаружения бактерий, разлагающих алкилсульфаты/ Ротмистров М.Н., Ставская С.С., Кривец И.А. // Прикладная биохимия и микробиология, 1977, 13, №1. – С. 147–150.

63. Davis M., Gloyna E.F. The role of algae in degrading detergent surface active agents. – J. Water Poll. Contr. Fed., 1979, 41, №8, p. 1494–1504.

64. Ставська С.С., Таранова Л.А. Бiологiчний розклад анiонних детергентiв. – Вiсн. Ан УССР, 1975, №9. – С. 87–93.

65. Willets A.J., Cain R.B. Microbial metabolism of alkylbenzene sulfonates enzyme system of bacillus species responsible for oxidation of the alkyl side chain of alkylbenzen sulfonates. – Antonie van Leeuwenhoek. J. Microbial. And Serol. 1982, 38, №4, р. 543–555.

66. Heyman J.G., Moloff Al. Biodegradation linear of alkylated sulfonates. – Environ. Sci. And Technol., 1978, 20, №2, p. 773–778.

67. Удод В.М. и др. Микроорганизмы-деструкторы ряда неионогенных ПАВ/ Удод В.М., Подорван Н.И., Венгожен Г.С., Гвоздяк П.И. // Микробиология, 1983, т. 52. Вып.3. – С. 370–374.

68. Каплин Т.В. и др. Распад синтетических неионогенных веществ в природных водоемах/ Каплин Т.В., Шлыкова В.В., Долженко Л.С. // Гидрохимические материалы, 1988, 46. – С. 189–198.

69. Трифонова Т.В. и др. Биологическое разложение неионогенных поверхностно-активных веществ/ Трифонова Т.В., Панкина А.М., Юдина Н.М./ Анилинокрасочная пром-сть, 1974, №1. – С. 67–73.

70. Лукиных Н.А. Очистка сточных вод, содержащих синтетические поверхностно-активные вещества. М., Стройиздат, 1982. – 95 с.


Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12