рефераты

рефераты

 
 
рефераты рефераты

Меню

Вплив елементарних еволюційних факторів на генофонди людських популяцій рефераты

Разом з тим для популяції із одного географічного району, але ізольованих в репродуктивному відношенні, причиною відмінностей в концентрації алелей АВ0 міг бути дрейф генів. Так, частота групи крові А досягає у індійців племені чорноногих 80%, а у індійців із штату Юта – 2%.

В основі стійкого збереження в популяції людей одночасно декілька алелей одного гена лежить, як правило, відбір на користь гетерозигот, який веде до стану балансованого поліморфізму. Класичним прикладом такої ситуації являється розповсюдження алелів гемоглобінів S,C і E в полум’ях тропічної малярії.

Вище наведені приклади поліморфізму за конкретними локусами, які пояснюються дією відомого фактору відбору. В природних умовах в силу дії на фенотипи організмів комплексу факторів відбір відбувається на фенотипи організмів комплексу факторів відбір відбувається за багатьма напрямками. В результаті формуються генофонди, збалансовані за набором і частотам алелей, що забезпечують в даних умовах достатнє виживання популяції. Це справедливо і для популяцій людей. Так, люди з групою крові 0 більш чутливі до чуми, ніж люди з групою В. Туберкульоз легенів у них лікується дуже важко, на відміну від людей з групою крові А. разом з тим лікування хворих сифілісом з групою крові 0 швидше викликає перехід хвороби до неактивної стадії. Для осіб з групою крові 0 ймовірність захворіти раком шлунка, раком шийки матки, ревматизмом, хворобою серця, холециститом, шлунково-камяною хворобою приблизно на 20% нижче, ніж для осіб з групою А.

Генетичний поліморфізм за багатьма локусами міг бути успадкованим людьми від предків на досапієнсній стадії. Поліморфізм за такими системами груп крові, як АВ0 i Rh, виявлений у людиноподібних мавп. Фактори відбору, дія яких складала сучасну картину розподілу алелей в популяції людей, для відносної більшості локусів точно не встановлені. Приклади, що розглядалися вище, вказують на їх екологічну природу.

Приймаючи до увагу слабку технічну спорядженість, погані економічні і гігієнічні умови життя основної маси населення планети на протязі значної частини історії людства, можна уявити яку велику роль грали збудники особливо шкідливих інфекцій, паразитарних захворювань, туберкульозу. В цих умовах спадковий поліморфізм сприяв розселенню людей, обумовлюючи задовольняючу життєво спроможність в різних екологічних ситуаціях. Певний внесок в розподіл алелей внесли масові міграції населення. В період до Великих географічних відкриттів і початку колоніальних експансій змішування великих контингентів людей різної расової приналежності мало місце в Східній Африці, Індії, Середній Азії, Західній Сибірі, Алтає-Саянському нагір’ї, Індокитаї. В результаті це спостерігалось в Південній і Центральній Америці.

Генетичний поліморфізм являється основою між популяційної і внутрішньо популяційної зрадливості людей. Зрадливість проявляється в нерівномірному розподілі на планеті певних захворювань, тяжкості їх протікання в різних людських популяціях, різної міри застережливості людей до певних хвороб, індивідуальних особливостях розвитку патологічних процесів, різноманіття реакції на лікування хвороб. Спадкове різноманіття довго було перешкодою успішному переливанню крові. В наш час воно ж завдає великих трудностей в рішенні проблем пересадок тканин і органів.

3.3 Природній відбір


В процесі видоутворення природний відбір переводить випадкову індивідуальну мінливість в біологічно корисну групову – популяційну, видову. Стабілізуюча його форма викликає «вдалі» комбінації алелей від попередніх етапів революції. Відбір підтримує також стан генетичного поліморфізму. Зміна біологічних факторів історичного розвитку соціальними призвела до того, що в людських популяціях відбір втратив функцію відображення. За ним збереглись функції стабілізації генофонду і підтримання спадкового різноманіття.

На користь дій стабілізуючої форми природного відбору говорить, наприклад, велика смертність серед недоношених і переношених новонароджених в порівнянні з доношеними. Напрямок відбору серед таких дітей залежить від зниження загальної життєздатності. Негативний відбір за одним лукусом можна проілюструвати на прикладі системи груп крові «резус» (Rh).

Близько 85% населення Європи має в еритроцитах антиген Rh і утворює групу Rh-позитивних індивідуумів. Решта людей із європейських популяцій не мають цього антигену і являються Rh-негативними. Синтез антигену Rh контролюється домінуючою алеллю D і відбувається в осіб з генотипами DD і Dd. Резус-негативні люди являються рецесивними гомозиготами (dd). При вагітності Rh-негативної жінки (dd) Rh-позитивним плодом (чоловік DD чи Dd, плід Dd) при порушенні цілісності плаценти при родах Rh-позитивні еритроцити плоду проникають в організм матері і імунізують його. При наступній вагітності Rh-позитивним плодом (Dd) анти-Rh-антитіла проникають через плаценту в організм і розрушують його еритроцити. Розвивається гемолітична хвороба новонародженого. Основним її симптомом являється тяжка анемія.

В наш час медицина в змозі боротися з цією формою патології у вигляді негайного переливання новонародженому Rh-негативної крові чи введення анти-Rh-антитіл для запобігання імунізації матері. В випадку відсутності медичної допомоги новонароджений нерідко помирав. При Rh-негативному фенотипі матері Rh-позитивний плід завжди гетерозиготний (Dd). Це означає, що зі смертністю такого індивідууму із генофонду популяції, до якого він належить, вилучається рівна кількість домінантних і рецесивних алелей лукусу «резус». Відбір в даному випадку направлений проти гетерозигот.

Під дією відбору знаходяться алелі, що контролюють синтез антигенів системи груп крові АВ0. про це свідчить зниження проти очікуваної кількості дітей в АВ0-несумісних шлюбах жінок 0-групи з чоловіками А, В або АВ-груп [Додаток Є].

Особливість відбору залу кусами групоспецифічних антигенів еритроцитів, таких, як «резус» або АВ0, полягає в тому, що він діє на рівні зиготи чи ранній стадії ембріогенезу. Помічено, що в шлюбах, де батько і мати несумісні за фактором «резус», кількість дітей з гемолітичною хворобою менша очікуваної. Так, серед білого населення США Rh-негативні люди складають приблизно16%. В такій популяції частота алеля d рівна 40%, а вірогідність розвитку гемолітичної хвороби за випадкового підбору шлюбних пар – 9%. Насправді частота цієї хвороби складає 1:150 – 1:200. Одним із факторів зниження являється одночасна несумісність батьків за лукусом АВ0. В цьому випадку Rh-позитивні еритроцити плоду, що потрапили в організм матері, руйнуються і імунізація не відбувається.

Негативний відбір діє в більшості популяцій людей за алелями аномальних гемоглобінів. Його особлива жорстокість обумовлюється тим, що він направлений проти гомозигот. Дитина, що помирає, наприклад, від серповидно-кліткової анемії, являється гомозиготною за алеллю S. Кожна така смерть видаляє із генофонду популяції алелей одного виду. Це призводить до досить швидкого зниження мінливості за відпорним лукусом. В багатьох популяціях людей частота алелей аномальних гемоглобінів, втому числі і S, не перевищує 1%.

Висока частота алелей таких аномальних гемоглобінів, як S, C, D, E, в деяких регіонах планети ілюструє дію природного відбору за підтриманням в людських популяціях стану балансованого генетичного поліморфізму. Негативний відбір по відношенню до алеля S перекривається могутнім позитивним відбором гетерозигот HbAHbS завдяки високій життєдіяльності останніх в ядрах тропічної малярії.

Дослідження в Уганді показали, що кількість збудників в 1 мл крові залежить від генотипу дитини і складає до 10 000 у HbSHbS, до 160 00 у HbAHbS і до 800 000 у HbAHbA. В північній Греції дослідили 48 сімей, в яких спостерігались і серповидно-клітковість і малярія. Серед братів і сестер, хворих серповидно-клітковою анемією, хворіло малярією 16 із 25 з генотипами HbAHbA і 1 із 23 з генотипами HbAHbS.

Таким чином, нормальні люди хворіли в 13 раз частіше, ніж індивідууми з аномальним генотипом. Знешкодження фактору контрвідбору призводить до зниження частоти алеля серповидно-клітковості. Цією причиною, що діє уже протягом декількох століть поряд з метисацією, пояснюють відносно низьку частоту гетерозигот HbAHbS серед північноамериканських негрів (8-9%) в порівнянні з африканськими (близько 20%).

В наведених прикладах діям негативного відбору, що знижує в генофондах деяких популяцій людей концентрацію певних алелей, протистоять контрвідбори, які підтримують частоту цих алелей на достатньо високому рівні. Результатом накладення численних і різнонаправлених векторів відбору являється формування і підтримання генофондів популяцій в стані, що забезпечує утворення в кожному поколінні генотипів достатньої пристосованості з врахуванням місцевих умов. Завдяки соціально-економісним перетворенням, успіхам лікувальної і особливо профілактичної медицини вплив відбору на генетичний склад популяцій людей прогресивно знижується.

ВИСНОВКИ


На відміну від змін прокаріотичного геному перетворення генома в еволюції еукаріот пов’язані з наростаючим збільшенням кількості ДНК. Це збільшення спостерігається в процесі прогресивної еволюції еукаріот. На фоні такого збільшення більша частина ДНК являється «мовчазливою», тобто не кодує амінокислот в білках чи послідовностях нуклеотидів в рРНК і тРНК. В складі ДНК знаходяться високо і помірно повторювані послідовності. Вся маса ДНК розподілена між певною кількістю спеціалізованих структур – хромосом. Хромосоми на відміну від нуклеотиду прокаріот мають складну хімічну організацію. Еукаріоти в більшості випадків диплоїдні. Час генерації у них значно більший, ніж у прокаріот. Відмічені особливості, що оформилися у ході еволюції геному еукаріот, допускають широкі структурні зміни і забезпечують не лише адаптивну (приспособлювальну), але і прогресивну еволюцію.

Серед перечислених вище моментів збільшення розмірів геному в еволюції еукаріот звертає на себе особливу увагу. Цей процес може здійснюватися різноманітними шляхами. Найрізкіше розмір геному змінюється в результаті поліплоідизації, яка достатньо широко розповсюджена в природі. Її суть полягає у збільшенні кількості ДНК і хромосом, кратних галоїдному. Досягнуте в результаті стану поліплоїдії призводить до збільшення дози всіх генів і складає залишок «сирого» генетичного матеріалу, який нарешті видозмінюється внаслідок мутації і відбору.

В ході революції в результаті накопичення мутацій і дивергенції нуклеотидних послідовностей поліплоїдизація супроводжувалась переходом до диплоїдного стану. Само собою збільшення дози генів ще не означає досягнення однозначно позитивного біологічного результату. Про це свідчить розвиток в еволюції еукаріотів механізмів компенсації дози генів, що збільшується, в ході їх експресій шляхом скорочення тривалості життя в клітинах зрілої РНК. Так, у тетраплоїдних карпових риб у відповідь на збільшення дози генів рРНК в молекулах рРНК соматичних клітин утворюються приховані внутрішні розриви, які призводять до передчасного їх старіння і скорочення складу в цитоплазмі.

Якби збільшення об’єму геному відбувалося тільки в результаті поліплоїдизації, то в природі мала б спостерігатися стрибкоподібна змін його розмірів. Насправді цей процес демонструє плавне збільшення складу ДНК в геномі. Це дозволяє допустити можливість існування інших механізмів, що змінюють його об’єм.

Дійсно, деякі значення у визначенні об’єму геному являються мають хромосомні перебудови, що супроводжуються змінами складу ДНК у них, такі, як дуплікації, делеції і транслокації. Вони обумовлюють повтор, втрату деяких послідовностей в складі хромосоми або перенесення їх в інші хромосоми.

Важливим механізмом збільшення об’єму геному являється ампліфікація нуклеотидних послідовностей, яка полягає в утворення їх копій, що призводить до виникнення повторюваних участків ДНК. Особливістю геному еукаріотів являється наявність таких повторів в великій кількості, що свідчить про суттєвий внесок механізму ампліфікації в збільшення розмірів спадкового матеріалу. Ампліфіціровані послідовності утворюють сімейства, в яких вони зібрані разом (тандемна організація) або ж розподілені по різних хромосомах. Конкретні зміни, що призводять до ампліфікації, бувають різноманітними. Поява тандемів повторюваних послідовностей пояснюється, наприклад, нерівним кросинговером, внаслідок якого виникають багаторазові дуплікації окремих участків ДНК. Можлива ампліфікація шляхом вирізання фрагменту в наступній його реплікації поза хромосомою і влаштуванням копій в інші хромосоми. Допускають також ампліфікацію, що здійснюється шляхом «зворотної транскрипції» ДНК та РНК за участі ферменту зворотної транскриптази з наступним влаштуванням копій ДНК в різні лукуси хромосом. В усіх випадках ампліфікація деякої послідовності призводить до виникнення в геномі більш чи менш численних повторів і полягає некратному збільшенню його об’єму. Наявність таких поворотів в поєднанні з мутаційним процесом являється початковим ступенем дивергентної еволюції однотипних послідовностей в межах сімейства з відповідною зміною якостей кодованих білків чи РНК.

Ярким прикладом еволюційної долі ампліфікованих нуклеотидних послідовностей являються сімейства глобінових генів, що широко розповсюджені в природі у видів різних рівнів організації. У вищих хребетних відомий ряд глобинових генів, що контролюють синтез поліпептидів гемоглобіну. Людина в геномі має вісім активних глобинових генів, що утворюють два сімейства. Сімейство генів, що визначають синтез α-глобінів, що мають ξ-глібинові гени, які експресуються у плода дорослої людини. Це сімейство генів розміщується в 16-й хромосомі в наступному порядку: 5΄—ξ²—ξ¹—α²—α¹—3΄. Сімейство генів, що визначають синтез β-глобінів, що розміщені в 11-й хромосомі, має ε-глобіновий склад ген ембріона, два схожі γ-глобінові гени Gγ і Аγ, малий δ- і великий β-глобінові гени дорослих: 5΄—ε—Gγ—Aγ—δ—β—3΄.

Вивчення гомології продуктів вказаних генів і генотипів міоглобіну у різних видів організмів дозволило допустити спільність походження цих сімейств. Ймовірно, близько 1100 млн. років тому відбулась дуплікація гену-попередника, що дала початок гемоглобіновим і міоглобіновим генам. Пізніше, близько 500 років тому, на початковому етапі революції хребетних відбулась дуплікація, яка давала початок двом (α і β) сімействам глобі нових генів, що супроводжувалася транс локацією. Близько 200 млн. років тому наступна дуплікація призвела до виникнення в сімействі β-глобінових генів плодів і дорослих. Близько 100 млн. років тому відбулось утворення ε- і γ-глобінових генів і , нарешті, 40 млн. років тому зявились і δ- і β-глобінові гени.

Сімейства α- і β-глобінові гени організовані в кластери, що, напевне, виникли в результаті тандемної дуплікації генів. В складі вказаних кластерів поряд з активно функціонуючими на різних стадіях онтогенезу генами виявлені неактивні, чи псевдогени. Останні, напевне, виникли в результаті появи в них змін, несумісних з можливістю їх експресії. В сімействі β-глобінових генів є два псевдогени: ψβ¹ і ψβ². В α-сімействі – один псевдоген.

Дивергенція ампліфікованих послідовностей з утворенням різних генів чи їх сімейств обумовлена накопиченням в них різних змін у вигляді замін генних мутацій. Про гомологію глобі нових генів обох сімейств свідчить наявність у всіх наявних глобі нових генах хребетних двох ін тронних ділянки, що займають в них строго однакове положення. Таку ж організацію мають і псевдо гени ψα¹ у людини, ψα² у кролика. Однак у ψα³-псевдогені миші в ході еволюції обидва інтригони виявились точно вирізаними.

Результатом ампліфікації невеликих послідовностей ДНК в межах функціональної одиниці являється подовження гена, за якого із простих генів можуть утворюватися більш складні. Це може відбуватися за рахунок тандем них дуплікацій. Наприклад, в генах, що кодують варіабельні ділянки імуноглобулінів миші, послідовності із 600 п. н. утворюються в результаті 12 тандемних повторів вихідної послідовності предків в 48 п. н. другим прикладом подовження гену тандем них дуплікацій слугує ген колагена α², який у куриці складається із 34 000 п. н. і має більше 50 екзонів. Довжина таких ділянок у всіх випадках кратна девяти нуклеотидним парам. Еволюція цих екзотів, напевне, ішла від гіпотетичного вихідного блоку довжиною в 54 пари нуклеотидів.

Список використаних джерел


1. Гончаренко М.С., Бойчук Ю.Д. Екологія людини. – К., 2005. – 393 с.

2. Загайко А.Л., Дербильова А.Г., Павільченко Ю.В. Біологія. Довідник абітурієнта. – Харків, 2006. – 286 с.

3. Рудий Б.А. Криза еволюцыонызму. – К., 2005. – 44-51 с.

Яблоков А.В. Популяционная біологія.-М.-Высшая школа-1987.- 142-143с.

4. Яригін. Біологія. Т1, Т2

ДОДАТОК А

 Найбільш населені країни в 1998 р. з прогнозом на 2050 р.

Місце

Країна

Населення, млн чол. 1998 рік

Країна

Населення, млн чол. 2050 рік

1

Китай

1255

Індія

1 533

2

Індія

976

Китай

1 517

3

США

274

Пакистан

357

4

Індонезія

207

США

348

5

Бразилія

165

Нігерія

339

6

Росія

148

Індонезія

318

7

Пакистан

147

Бразилія

143

8

Японія

126

Бангладеш

218

9

Бангладеш

124

Ефіопія

213

10

Нігерія

122

Іран

170

11

Мексика

96

Конго

165

12

Німеччина

82

Мексика

154

13

В'єтнам

78

Філіппіни

131

14

Іран

73

В'єтнам

130

15

Філіппіни

72

Єгипет

115

16

Єгипет

66

Росія

114

17

Туреччина

64

Японія

110

18

Таїланд

62

Туреччина

98

19

Франція

60

ПАР

91

20

Ефіопія

59

Таїланд

89

Страницы: 1, 2, 3, 4, 5, 6