рефераты

рефераты

 
 
рефераты рефераты

Меню

Начала современного естествознания: концепции и принципы рефераты

Приведенные выше и другие зарегистрированные научные открытия наглядно показывают высокий уровень научных результатов, выдвигаемых в качестве открытий и получающих общественное признание. Основная часть зарегистрированных научных открытий относится к области биологии и медицины. Данное обстоятельство требует более глубокого анализа, что является важным как для истории науки в целом, так и для биологии и медицины в частности. Характеризуя в целом научные открытия, зарегистрированные в области естественных наук, можно отметить, что в настоящее время подавляющее их большинство получило мировое общественное научное признание, что связано, в первую очередь, с высокими требованиями, предъявляемыми при научной экспертизе, к результатам научных исследований, выдвигаемым их авторами в качестве научных открытий.


3.      Что такое кварк? Удалось ли обнаружить кварки на опыте? Какое количество кварков предполагается в наиболее распространенном варианте? Какие свойства приписываются кварку?


Кварки - общее название для нескольких фундаментальных частиц, из которых можно составить любую сильновзаимодействующую частицу. При этом такие "составные" частицы будут обладать всеми основными свойствами реальных частиц. Следует заметить, что сильновзаимодействующие частицы составляют абсолютное большинство среди всех типов частиц. Столь необычное название "кварки" заимствовано из книги Джеймса Джойса "Поминки по Финнигану", где встречается словосочетание "три кварка" как таинственный крик чаек, который слышится герою романа в кошмарном бреду.

Наиболее естественно существование унитарных мультиплетов можно было объяснить, введя в рассмотрение три гипотетические частицы - кварки - с довольно экзотическими свойствами, а именно с дробными барионным и электрическим зарядами. В связи с такой экзотичностью свойств и с тем, что их три, кварки и получили свое необычное название. Если кваркам приписывать некоторые известные свойства, то достаточно всего трех кварков и трех антикварков, чтобы из них, как из деталей конструктора, построить любой из перечисленных выше адронов, причем можно показать, что адроны. "слепленные" из кварков, будут группироваться в те самые супермультиплеты, которые были известны в то время.

Парк, нарк, ларк

В более ранней и довольно успешной теории Сакаты в качестве трех основных фундаментальных частиц для построения адронов использовались протон (p), нейтрон (n) и лямбда-частица (^). Поэтому те же самые символы используют и в современной теории для обозначения трех кварков. Назовем эти кварки парком (p), нарком (n) и ларком (^). Кварки не надо путать с адронами, которые обозначаются теми же самыми символами.

Электрические заряды кварков и значения других квантовых чисел для них

Название кварка Символ Q S Y Iz B o


Парк p +2/3 0 1/3 1/2 1/3 1/2

Нарк n - 1/3 0 1/3 -1/2 1/3 1/2

Ларк ^ - 1/3 - 1 - 2/3 0 1/3 1/2


Q - электрический заряд в единицах заряда электрона;

S - квантовое число странности;

Y - квантовое число гиперзаряда (Y=B+S);

Iz - квантовое число z-компоненты изоспина;

B - барионное число;

о - внутренний момент импульса (спин).

Для всех кварков барионное число B и спин o одинаковы.

Позднее в кварковую модель ввели четвертый и пятый кварки.

Предполагается, что существует еще один, шестой кварк.

Сама тройка кварков (а также тройка антикварков) тоже образует супермультиплет - унитарный триплет.

с-Кварк (очарованный)

В конце 1974 г. одновременно в двух лабораториях была открыта новая частица, свойства которой оказались таковы, что их не удалось объяснить в рамках трехкварковой модели. Для интерпретации этих свойств потребовалось ввести четвертый кварк - с-кварк, названный очарованным (от слова charm - очарование).

с-Кварк оказался вполне равноправной частицей по отношению к остальным трем кваркам. Комбинируя с-кварк с антикварками u, d, s, можно получить новые мезоны, которые были названы очарованными.

В настоящее время уже обнаружены представители всех очарованных мезонов и некоторые очарованные барионы. На этом основании, казалось бы, можно было считать, что кварковая модель достигла совершенства, т.е. описывает все существующие частицы и не конструирует лишних, не встречающихся в природе.

b-Кварк (прелестный)

Однако, в 1977 г. была открыта еще одна частица, названная ипсилон-мезоном, свойства которой не укладывались в четырехкварковую модель. Новый, пятый кварк b, названный прелестным (от слова beauty - прелесть, иногда название b-кварка производят от слова botom - низ).

t-Кварк (правдивый)

Наконец, имеются основания считать, что должен существовать еще и шестой кварк t, названный правдивым (от слова truth) или верхним (от слова top). Одним из таких оснований является предсказываемая теорией электрослабого взаимодействия симметрия в числе кварков и лептонов (которых открыто шесть).

Природные и "самодельные" кварки

Успех кварковой модели и желание свести многообразие частиц к нескольким фундаментальным заставляют физиков искать кварки в природе.

Кваркам естественно приписать большую массу. Но рождение частиц с большой массой требует больших кинетических энергий, поэтому поиски кварков следует вести в таких условиях (естественно или искусственно созданных), когда имеется возможность трансформации большой порции кинетической энергии в энергию покоя (массу). Связь между массой кварка m q и минимальной кинетической энергией, бомбардирующей частицы Тмин, необходимой для рождения кварка этой массы, зависит от типа реакции, в которой образуется кварк. В соответствии с законами сохранения образование кварка может происходить только в паре с антикварком.

Минимальная энергия, необходимая для рождения кварка массой m q


m q m p 3m p 5m p 10m p 20m p

Тмин'm p c 6 30 70 240 880

Тмин' ГэВ 5,6 28 65 225 825


Для реакции образования кварка при соударении двух протонов получается следующая зависимость Тмин от предполагаемого значения m q:


Тмин=2(m q /m p) (2m p + m q) c


В таблице приведены значения Тмин, вычисленные по данной формуле в разных предположениях о значении массы кварка. Существуют соображения, из которых следует, что при данной энергии Т могут рождаться частицы большей массы, чем указано в таблице (напр., при Т=30 ГэВ могут родиться кварки массой до 5m p). Однако вероятность такого процесса настолько мала, что его можно не учитывать в расчетах. Из таблицы видно, что кварки массой m q < 3 m p имеет смысл искать среди частиц, образующихся в мишенях ускорителей протонов на энергию 30 ГэВ, кварки массой m q < 5 m p - в мишенях ускорителей на энергию 70 ГэВ и т.д.

Для выделения кварков из огромного числа других, рождающихся в мишени ускорителя, можно воспользоваться их специфическими свойствами, обусловленными дробностью электрического заряда. Например, пониженной ионизирующей способностью. Ионизирующая способность заряженной частицы изменяется пропорционально квадрату ее электрического заряда. Так как кварки имеют заряд, равный 1/3 или 2/3 заряда электрона, ионизирующая способность кварков составляет соответственно 1/9 или 4/9 ионизирующей способности электронов. Такие опыты были действительно предприняты сначала на ускорителях в ЦЕРНе и в Брукхейвенской лаборатории, затем в Серпухове, а потом снова в ЦЕРНе на ускорителе протонов до энергии 400 ГэВ и в Батавии на ускорителе протонов до энергии 500 ГэВ, но они не дали положительного результата. Это означает, что либо масса кварков превышает 15 протонных масс, либо они рождаются с гораздо меньшей вероятностью, чем предполагали, либо, наконец, кварков в свободном виде нет вообще.

Кварки, рожденные космическим излучением

В составе космического излучения имеются протоны энергией выше 500 ГэВ. Эти протоны в соударениях с ядрами атмосферы могут рождать кварки, даже если их масса превышает 15 m p. Кварки, рожденные космическим излучением, можно пытаться регистрировать при помощи детекторов, чувствительных к ионизации, вызываемой быстродвижущимися частицами с дробным электрическим зарядом.


4. Какие типы взаимодействия являются короткодействующими? Привести примеры систем, в которых действуют эти силы


Слабое взаимодействие менее известно за пределами узкого круга физиков и астрономов, но это нисколько не умаляет его значения. Достаточно сказать, что если бы его не было, погасли бы Солнце и другие звезды, ибо в реакциях, обеспечивающих их свечение, слабое взаимодействие играет очень важную роль. Слабое взаимодействие относится к короткодействующим: его радиус примерно в 1000 раз меньше, чем у ядерных сил.

Сильное взаимодействие - самое мощное из всех остальных. Оно определяет связи только между адронами. Ядерные силы, действующие между нуклонами в атомном ядре, - проявление этого вида взаимодействия. Оно примерно в 100 раз сильнее электромагнитного. В отличие от последнего (а также гравитационного) оно, во-первых, короткодействующее на расстоянии, большем 10-15м (порядка размера ядра), соответствующие силы между протонами и нейтронами, резко уменьшаясь, перестают их связывать друг с другом. Во-вторых, его удается удовлетворительно описать только посредством трех зарядов (цветов), образующих сложные комбинации.

Важнейшей характеристикой фундаментального взаимодействия является его радиус действия. Радиус действия - это максимальное расстояние между частицами, за пределами которого их взаимодействием можно пренебречь. При малом радиусе взаимодействие называют короткодействующим, при большом - дальнодействующим. Сильное и слабое взаимодействия являются короткодействующими. Их интенсивность быстро убывает при увеличении расстояния между частицами. Такие взаимодействия проявляются на небольшом расстоянии, недоступном для восприятия органами чувств. По этой причине эти взаимодействия были открыты позже других (лишь в XX веке) с помощью сложных экспериментальных установок. Для объяснения малого радиуса действия ядерных сил японский физик Х. Юкава в 1935 высказал гипотезу, согласно которой С. в. между нуклонами (N) происходит благодаря тому, что они обмениваются друг с другом некоторой частицей, обладающей массой, аналогично тому, как электромагнитное взаимодействие между заряженными частицами, согласно квантовой электродинамике, осуществляется посредством обмена "частицами света" - фотонами. При этом предполагалось, что существует специфическое взаимодействие, приводящее к испусканию и поглощению промежуточной частицы - переносчика ядерных сил. Другими словами, вводился новый тип взаимодействий, который позже назвали сильные взаимодействия. Исходя из известного экспериментального радиуса действия ядерных сил, Юкава оценил массу частицы - переносчика с. в. Такая оценка основана на простых квантовомеханических соображениях. Согласно квантовой механике, время наблюдения системы ?t и неопределённость в её энергии ?E связаны соотношением: ?E?t Сильные взаимодействия h, где h -планка постоянная. Поэтому, если свободный нуклон испускает частицу с массой m (т. е. энергия системы меняется согласно формуле относительности теории на величину ?E = mc2, где с - скорость света), то это может происходить лишь на время ?t Сильные взаимодействия h/mc2. За это время частица, движущаяся со скоростью, приближающейся к предельно возможной скорости света с, может пройти расстояние порядка h/mc. Следовательно, чтобы взаимодействие между двумя частицами осуществлялось путём обмена частицей массы т, расстояние между этими частицами должно быть порядка (или меньше) h/mc, т. е. радиус действия сил, переносимых частицей с массой m, должен составлять величину h/mc. При радиусе действия Сильные взаимодействия10-13 см масса переносчика ядерных сил должна быть около 300 me (где me - масса электрона), или приблизительно в 6 раз меньше массы нуклона. Такая частица была обнаружена в 1947 и названа пи-мезоном (пионом, ?). В дальнейшем выяснилось, что картина взаимодействия значительно сложнее. Оказалось, что, помимо заряженных ?± и нейтрального ?0-мезонов с массами соответственно 273 те и 264 me, взаимодействие передаётся большим числом др. мезонов с большими массами: ?, ?, ?, К,... и т. д. Кроме того, определенный вклад в С. в. (например, между мезонами и нуклонами) даёт обмен самими нуклонами и антинуклонами и их возбуждёнными состояниями барионными резонансами. Из соотношения неопределённостей следует, что обмен частицами, имеющими массы больше массы пиона, происходит на расстояниях, меньших 10-13 см, т. е. определяет характер С. в. на малых расстояниях, экспериментальное изучение различных реакций с адронами (таких, например, как реакции с передачей заряда - "перезарядкой": ?- + р > ?0 + n, К- + р > K0 + n и др.) позволяет в принципе выяснить, какой вклад в С. в. даёт обмен теми или иными частицами.


5. В чём суть идеи корпускулярно-волнового дуализма?


При исследовании поведения света физиками было обнаружено странное свойство: в одних экспериментах поведение света соответствовало поведению потока частиц или отдельных частиц, в других - свет проявлял волновой характер - вел себя как поперечная волна в упругой среде. Аналогичные свойства были обнаружены и у элементарных частиц, таких как электрон. Такое двоякое поведение получило название корпускулярно-волнового дуализма.

Суть корпускулярно-волнового дуализма заключается в том, что ни свет ни элементарные частицы не являются ни частицами, ни волнами в привычном понимании. Человеческое сознание и воображение не имеет средств для наглядного представления объектов микромира. Частицы и волны здесь являются моделями ограниченной применимости, наглядными аналогами из повседневного макромира, подкрепленные математическими соотношениями. Часть аспектов поведения лучше описывается для корпускулярной модели, часть - для волновой. Поскольку выбор той или иной модели для каждой ситуации достаточно прост, то с точки зрения математики затруднение относительно легко решается.

Суть корпускулярно волнового дуализма в величине масштаба изучения света как части спектра электромагнитного излучения.


6. Дайте несколько формулировок второго начала термодинамики


Существуют несколько эквивалентных формулировок второго начала термодинамики:

Постулат Клаузиуса: "Невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему" (такой процесс называется процессом Клаузиуса).

Постулат Томсона: "Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара" (такой процесс называется процессом Томсона).

Другая формулировка второго начала термодинамики основывается на понятии энтропии:

"Энтропия изолированной системы не может уменьшаться" (закон неубывания энтропии).

В наиболее общем виде второй закон термодинамики может быть сформулирован следующим образом: любой реальный самопроизвольный процесс является необратимым. Все прочие формулировки второго закона являются частными случаями наиболее общей формулировки.

В. Томсон (лорд Кельвин) предложил в 1851 г. следующую формулировку: невозможно при помощи неодушевленного материального агента получить от какой-либо массы вещества механическую работу посредством охлаждения ее ниже температуры самого холодного из окружающих предметов.

М. Планк предложил формулировку более четкую, чем формулировка Томсона: невозможно построить периодически действующую машину, все действие которой сводилось бы к понятию некоторого груза и охлаждению теплового источника. Под периодически действующей машиной следует понимать двигатель, непрерывно (в циклическом процессе) превращающий теплоту в работу. В самом деле, если бы удалось построить тепловой двигатель, который просто отбирал бы теплоту от некоторого источника и непрерывно (циклично) превращал его в работу, то это противоречило бы положению о том, что работа может производиться системой только тогда, когда в этой системе отсутствует равновесие (в частности, применительно к тепловому двигателю - когда в системе имеется разность температур горячего и холодного источников).


7. Что такое диссипативная структура? В какой теории используется это понятие?


Диссипативная система (или диссипативная структура), от лат. dissipatio - "рассеиваю, разрушаю") - это открытая система, которая оперирует вдали от термодинамического равновесия. Иными словами, это устойчивое состояние, возникающее в неравновесной среде при условии диссипации (рассеивания) энергии, которая поступает извне. Диссипативная система иногда называется ещё стационарной открытой системой или неравновесной открытой системой.

Диссипативная система характеризуется спонтанным появлением сложной, зачастую хаотичной структуры. Отличительная особенность таких систем - несохранение объёма в фазовом пространстве, то есть не выполнение Теоремы Лиувилля.

Простым примером такой системы являются ячейки Бенара. В качестве более сложных примеров называются лазеры, реакция Белоусова - Жаботинского и сама биологическая жизнь.

Термин "диссипативная структура" введен Ильёй Пригожиным в его теории диссипативных структур.

Последние исследования в области "диссипативных структур" позволяют делать вывод о том, что процесс "самоорганизации" происходит гораздо быстрее при наличии в системе внешних и внутренних "шумов". Таким образом шумовые эффекты приводят к ускорению процесса "самоорганизации".



8. Какая реакция называется обратимой?


Обратимая реакция - реакция, которая в данных условиях может протекать как в прямом, так и в обратном направлениях.

Огромное большинство химических реакций обратимы. Обратимость реакций мешает производству. Химическое равновесие - состояние реагирующей системы, при котором в ней протекают только обратимые реакции. Параметры состояния системы при химическом равновесии не зависят от времени; состав такой системы называют равновесным. Химическое равновесие - состояние системы в котором скорость прямой реакции равна скорости обратной реакции.


9. Что такое естественный отбор? Какие виды естественного отбора выделяют?


Естественный отбор - основной движущий фактор эвоюции живых организмов.

Естественный отбор - это процесс выживания и воспроизведения организмов, наиболее приспособленных к условиям среды, и гибели в ходе эволюции неприспособленных. Естественный отбор - следствие борьбы за существование; обусловливает относительную целесообразность строения и функций организмов; творческая роль естественного отбора выражается в преобразовании популяций, приводящем к появлению новых видов. Понятие о естественном отборе как основном движущем факторе исторического развития живой природы введено Ч. Дарвином.

Движущий отбор приводит генетический состав популяций в соответствие изменениям во внешней среде так, чтобы средняя приспособленность популяций была максимальной.

Стабилизирующий отбор сохраняет то состояние популяции, которое обеспечивает ее максимальную приспособленность в постоянных условиях существования. В каждом поколении удаляются особи, отклоняющиеся от среднего оптимального значения по приспособительным признакам.

При стабилизирующем отборе преимуществом обладают особи со средним проявлением признаков, при движущем - одна из крайних форм. Теоретически мыслима еще одна форма отбора - дизруптивный или разрывающий отбор, когда преимущество приобретают обе крайние формы.

Половой отбор - это естественный отбор на успех в размножении. Признаки, которые снижают жизнеспособность их носителей, могут возникать и распространяться, если преимущества, которые они дают в успехе размножения значительно выше, чем их недостатки для выживания.


10. Были ли экологические кризисы, вызванные человеком, в древности? Опишите их


Слово "экология" чаще всего используют не в строгом значении, а в более узком, обозначая им взаимосвязи человека с окружающей средой, те изменения которые происходят благодаря антропогенному давлению в биосфере, равно как и проблемы людей, имеющие своим источником силы природы. Люди часто склонны идеализировать "светлое прошлое", и наоборот, испытывать апокалепсические настроения по отношению к "туманному будущему".

К счастью или нет, но показывает нам, что " что ни век, то век железный", и если мы говорим об экологии, то экологические бедствия в региональных, по крайней мере, масштабах, имели место еще до Рождества Христова. С древнейших времен человек только и делал, что менял, преобразовывал природу вокруг себя, и с древнейших времен плоды его деятельности возвращались к нему бумерангом. Обычно антропогенные изменения в природе накладывались на собственно природные ритмы, усиливая неблагоприятные тенденции и препятствуя развитию благоприятных. Из-за этого часто трудно разграничить, где негативные влияния цивилизации, а где собственно природные явления. Даже сегодня не прекращаются споры, например, по поводу того, являются озоновые дыры и глобальное потепление следствием естественных процессов или нет, но негативность человеческой деятельности не подвергаются сомнению, спор может идти только о степени влияния.

Возможно (хотя этот факт не доказан абсолютно достоверно) человек внес большой вклад в возникновение самой большой на планете пустыни Сахара. Фрески и наскальные рисунки, находимые там и датируемые 6-4 тысячелетием до нашей эры показывают нам богатый животный мир Африки. На фресках изображены буйволы, антилопы, бегемоты. Как показывают исследования опустынивание саванны на территории современной Сахары началось около 500 000 лет назад, но обвальный характер процесс принял с 3 т. до н. э. Характер жизни кочевых племен Юга Сахары, образ жизни, которых не слишком сильно изменился с тех самых пор. А также данные о хозяйстве древних жителей Севера континента, позволяют предположить, что подсечно-огневое земледелие, вырубка деревьев, способствовали осушению рек на территории будущей Сахары. А неумеренный выпас скота привел к выбиванию копытами плодородных почв, итогом этого явилось резкое усиление эрозии почвы и опустынивание земель.

Те же процессы уничтожили несколько крупных оазисов в Сахаре и полосу плодородных земель к северу от пустыни после прихода туда арабов кочевников. Наступление Сахары на юг в наши дни также связанно с хозяйственной деятельностью коренных народов. "Козлы съели Грецию" - эта поговорка известна с античных времен. Козловодство уничтожило древесную растительность в Греции, копыта коз вытоптали почву. Процесс эррозии почв в Средизимноморье в античное время был в 10 раз выше в окультуренных областях. Вблизи античных городов существовали огромные свалки. В частности около Рима один из холмов свалки был высотой в 35 метров, а диаметром в 850 метров. Грызуны и нищие кормившиеся там разносили болезни. Сливы отбросов на улицы городов, сбросы сточных городских вод в водоемы, откуда потом брали воду те же жители. В том же Риме проживало около 1 миллиона человек, можно представить, сколько они производили мусора.

Сведение лесов по берегам рек превратило некогда судоходные водные потоки в обмелевшие и пересыхающие. Нерациональная мелиорация приводила к засолению почв, применение плуга переворачивало пласты почв (он активно применялся с начала нашей эры), вырубка леса приводила к массовой деградации почв, и по мнению многих исследователей привело к упадку античного сельского хозяйства, экономики в целом и крушению всей древней культуры.

Подобные явления были и на Востоке. Один из крупнейших и древнейших городов Харрапской цивилизации (II - III тысячелетия до нашей эры) Монхефно-Даро несколько раз, более 5, затапливался водой, и каждый раз более, чем на 100 лет. Как полагают, наводнения вызывались заиливанием водных протоков из-за неумелой мелиорации. Если в Индии несовершенство ирригационных систем приводило к наводнением, то в Месопотамии к засолению почв.

Создание мощных ирригационных систем приводило к возникновению обширных солончаков вследствие нарушения водно-солевого баланса. Наконец, из-за экологических катастроф, вызванных деятельностью человека, несколько высокоразвитых культур просто погибли. Такая судьба постигла, например, цивилизацию майя в Центральной Америки и культуру острова Пасхи. Индейцы майя построившие множество каменных городов, пользовавшиеся иероглификой, знавшие математику и астрономию лучше своих европейских современников (первое тысячелетие нашей эры), подвергли почву такой эксплуатации, что истощившаяся земля вокруг городов уже не могла прокормить население. Существует гипотеза, что это вызвало миграцию населения с места на место, и привело к деградации культуры.

На острове Пасха (Рапануи) в Тихом океане загадочно возникла и умерла одна из интереснейших культур древнего мира. Богатый растительным и животным миром остров смог стать домом высокоразвитой культуры. Жители Пасхи умели писать, совершали многодневные плавания. Но в какой-то момент (вероятно около 1000 г.н.э.) на острове началось массовое производство огромных каменных истуканов, возможно олицетворявших племенных вождей. В ходе строительства статуй и доставки их на место стоянки (готовых всего около 80 статуй,весом до 85 тонн) леса острова были сведены на нет. Отсутствие древесины препятствовало строительству фигур и производству орудий труда. Резко сократились связи острова Рапануи с другими островами Тихого океана, население обнищало, общество деградировало.

Экоцид - слово, вошедшее в наш оборот сравнительно недавно, но примеры экоцида мы можем найти еще в древности. Так, воины Чингизхана, вторгшиеся в Туркестан и Переднюю Азию разрушили там ирригационные сооружения, что в частности вызвало засоление и опустынивание земель в районе древнего Харезма, даже Амударья из-за этого повернула на запад, что вызвало упадок среднеазиатского оазиса цивилизации. Но гораздо чаще экологические проблемы возникают из-за экономической деятельности людей.



Список использованной литературы.


1.      Е.М. Романова, Т.А. Индирякова, О.А. Индирякова. Концепция современного естествознания. Учебно-методический комплекс. Модуль III. Методическое пособие для самостоятельной работы. - Ульяновск, 2009. - 198 стр.

2.      Потоцкий В.В. Оценка эффективности результатов фундаментальных научных исследований (методологические аспекты) // Вестник РАЕН. 2002. Т. 2. № 1. С. 24-28.

3.      Потоцкий В.В. Методологические проблемы оценки открытий в области общественных наук // Вестник РАЕН. 2002. Т. 2. № 3. С. 55-60.

4.      И.Розенталь "Элементарные частицы и структура Вселенной", М. Наука, 1984.

5.      Салас Соммер Дарио. "Экология внутреннего мира" // Вестник РАЕН. 2006. № 1. С. 74-75.

6.      Аруцев А.А., Ермолаев Б.В. Концепции современного естествознания.

7.      Савченко В.Н. Начала современного естествознания: концепции и принципы: учебное пособие / В.Н. Савченко, В.П. Смагин. - Ростов н/Д.: Феникс, 2006. - 608 с. - (Высшее образование).

8.      Дубнищева Т.Я. Концепции современного естествознания: учеб. пособие для студ. вузов / Татьяна Яковлевна Дубнищева. - 6-е изд., испр. и доп. - М.: Издательский центр "Академия", 2006. - 608 с.


Страницы: 1, 2