рефераты

рефераты

 
 
рефераты рефераты

Меню

Концепции развития современных технологий и энергетики рефераты

Одновременно идет поиск новых применений субмикронной литографии. Обнаружено, что можно регистрировать световой поток не с помощью фотодиода или другого подобного прибора, а с помощью проводников, чередование которых идет с шагом, кратным длине волны света, а свет падает вдоль этой решетки. Прибор работает как антенна, в элементах которой наводится электрический ток. Размеры элементов такого приемника таковы, что они не могут быть изготовлены традиционным способом фотолитографии. На помощь приходит микролитография - электронная, ионная и рентгеновская.

Ожидается, что в ближайшее время промышленность освоит интегральные схемы с миниатюрными размерами отдельных деталей 0,2-0,3 мкм (200- 300 нм). Число таких элементов в схеме - полупроводниковой пластине площадью несколько квадратных миллиметров - достигнет десятков миллионов, т.е. увеличится по крайней мере в 1000 раз. Возможности интегральных схем при этом возрастут не в 1000 раз, а гораздо больше. Предполагается, что в ближайшие годы число элементов на кристалле достигнет 7 млрд, правда, такой прогноз называют осторожным.

Сейчас основной материал полупроводниковых приборов - кремний. Переход к наноэлектронике заставляет обратиться и к другим материалам: арсениду галлия, фосфиду индия, кадмий - ртуть - теллуру и др.

С развитием наноэлектроники изменяется и архитектура полупроводниковых приборов. Все процессы, определяющие работу интегральной схемы и вообще полупроводниковых приборов, как правило, происходят в тонких приповерхностных слоях толщиной до одного атомного слоя. Это одномерная архитектура. Наноэлектроника позволяет создавать трехмерные - многослойные структуры. Технология получения многослойных структур разрабатывается. На этой основе развивается новое направление электроники, называемое функциональной электроникой. В первую очередь это оптоэлектроника. Размеры оптоэлектронных структур могут достигать 100 нм (доли длин световых волн), размеры отдельных деталей - 20 нм.

Широким фронтом ведутся работы по использованию длинных органических молекул в качестве элементов микросхем. Оперировать такими молекулами можно только с помощью электронных и ионных пучков. Все более реальным становится создание машины по аналогии с человеческим мозгом с развитием новых технологических приемов.

В настоящее время интенсивно развивается молекулярно-инженерная технология, результатами твердотельной технологии человечество уже пользуется, и ее совершенствование и переход к наноэлектронике и многомолекулярным структурам приближаются к решению поставленных задач.


5. Лазерные технологии

5.1 Особенности лазерного излучения и разновидности лазеров

Лазер - это слово появилось сравнительно недавно. Вначале оно было известно только узкому кругу специалистов-физиков. Популярность его постепенно росла. А в последнее время очень многие не просто слышали о лазере, но и знают о его больших реализованных и потенциальных возможностях. В то же время чаще всего у неспециалистов лазер вряд ли вызывает положительные эмоции. Лазер? Ничего интересного: трубка в корпусе, иногда даже непривлекательном, из которой выходит тоненький луч - зеленый, синий, чаще красный. Есть ли о чем здесь говорить? Оказывается, есть. И специалистам, и всем, кто далек от понимания физических явлений, связанных с лазером. Для специалистов, в первую очередь физиков, лазер дал жизнь весьма перспективному научному направлению - нелинейной оптике, охватывающей исследования распространения мощных световых пучков в твердых телах, жидкостях и газах и их взаимодействия с веществом. Лазеры породили новые технологии с уникальными возможностями. Для многих лазер - источник необыкновенного света, который может вылечить надвигающуюся слепоту и на лету поразить движущуюся цель, мгновенно просверлить отверстие в самой твердой детали, сделанной, например, из алмаза и т.д.

В чем же необыкновенные свойства лазерного излучения, лазерного луча? Во-первых, лазерный луч распространяется, почти не расширяясь. Напомним: для того чтобы луч прожектора не расходился, используют большое вогнутое зеркало и систему линз, собирающие свет от источника в пучок. Это помогает, но мало: уже на расстоянии около километра от прожектора луч становится раза в два шире. Лазеру же собирающие зеркала и линзы чаще всего не нужны. Он и без них сам по себе излучает почти параллельный пучок света. Слово "почти" означает, что пучок лазерного света не совсем параллельный: существует угол расхождения, но он сравнительно мал - около 10-5 рад, и тем не менее, на больших расстояниях он ощутим: на Луне такой пучок, испущенный с Земли, даст пятно диаметром примерно 3 км.

Во-вторых, свет лазера обладает исключительной монохроматичностью, т.е. он имеет только одну длину волны, один цвет. В отличие от обычных источников света, атомы которых излучают свет независимо друг от друга, в лазерах атомы излучают свет согласованно. Преломляясь в призме, луч белого света превращается в яркую радугу-спектр, а одноцветный, монохроматичный свет проходит через нее не разлагаясь. Линза тоже преломляет лучи, собирая их в фокусе. Но белый свет она фокусирует в радужное пятнышко, а лазерный луч - в крошечную точку, диаметр которой может составлять сотые и даже тысячные доли миллиметра. Благодаря такому свойству лазерного луча стала возможной оптическая запись информации с высокой плотностью - крохотные оптические диски вмещают громадное количество информации - сотни мегабайт.

В-третьих, лазер - самый мощный источник света. В узком интервале спектра кратковременно (10-11 с) достигается мощность излучения 1012-1013 Вт с одного квадратного сантиметра, в то время как мощность излучения Солнца с той же площади равна только 7.103 Вт, причем суммарно по всему спектру. На узкий интервал, равный ширине спектральной линии лазерного излучения, приходится у Солнца всего лишь 0,2 Вт/см2. Напряженность электрического поля в электромагнитной волне, излучаемой лазером, составляет 1010-1012 В/см; она превышает напряженность поля внутри атома.

Названные удивительные свойства лазерного излучения придали свету новое лицо. Еще на заре развития лазерной техники французский физик Луи де Бройль сказал: "Лазеру уготовано большое будущее. Трудно предугадать, где и как он будет применяться, но я думаю, что лазер - это целая техническая эпоха".

В 1960 г.Т. Мейманом (США) был создан первый лазер - рубиновый, работающий в импульсном режиме. В нем не вся энергия света лампы накачки преобразуется в лазерную вспышку. Большая ее часть уходит на бесполезный и даже просто вредный нагрев стержня и зеркального кожуха. Мощные импульсные лазеры охлаждают потоком воздуха, воды, а иногда и жидким азотом. Частота генерации импульсных лазеров может достигать более 10 млн вспышек в секунду. Излучение таких лазеров воспринимается как непрерывное. Вспышка импульсного лазера имеет огромную мощность - тысячи ватт. Мощность эту можно повысить, увеличив размеры активного лазерного элемента. А можно позади этого элемента поставить еще один лазерный стержень с лампой-вспышкой, т.е. еще один лазер, но без зеркал. Импульс света первого лазера заставит срабатывать второй. Оба световых импульса, сложившись, удваивают мощность вспышки. Но размеры стержня нельзя увеличивать беспредельно: чем больше стержень, тем больше потери света в нем. Поэтому стержни даже из лучших материалов нет смысла делать длиннее 50-60 см. Излучение, сфокусированное в крошечное пятно, можно применять для многих целей, о некоторых из них рассказано ниже. Но все-таки это короткий световой импульс. Конечно, им можно пробить отверстие, сварить две металлические проволоки и сделать много других полезных дел. Но для многих задач гораздо удобнее было бы иметь непрерывное лазерное излучение, скажем, для сварки или резки. Существует и такое излучение, его дают газовые лазеры. Газовый лазер был создан почти одновременно с рубиновым, в том же 1960 г. Он работал на смеси гелия и неона. Современные газовые лазеры работают на многих газах и парах. Все они дают непрерывное излучение в очень широком диапазоне длин волн: от ультрафиолетового до инфракрасного света.

Однако на этих достижениях ученые не остановились. Был создан газодинамический лазер, похожий на реактивный двигатель. В его камере сгорания сжигается угарный газ (окись углерода) с добавкой топлива (керосина, бензина, спирта). Получившаяся при этом смесь газов состоит из углекислого газа, азота и паров воды. Молекулы газа возбуждены и готовы к работе: температура в камере сгорания доходит до тысячи с лишним градусов, а давление - до 20 атм. Раскаленные газы из камеры сгорания вытекают через расширяющееся реактивное сопло, иногда называемое соплом Лаваля. В нем газ разгоняется до сверхзвуковой скорости, охлаждаясь почти до нуля! Проносясь между зеркалами, молекулы газа излучают энергию в виде световых квантов, рождая лазерный луч мощностью 150-200 кВт. И это мощность не отдельной вспышки, а постоянного, устойчивого луча, сияющего, пока у лазера не кончится горючее.

Но не только газовые лазеры дают непрерывное излучение. Его дает и полупроводниковый лазер, который вдохнул жизнь в оптическую запись. О ее возможностях рассказано выше, о ней имеют представление многие пользователи персональных компьютеров, державшие в руках лазерный диск, который привлекателен не только своим внешним видом, но и своей информационной емкостью: на диске диаметром 12 см можно записать сотни тысяч страниц текста.

Среди полупроводниковых лазеров лучшим по праву считается лазер на основе арсенида галлия - соединения редкого элемента галлия с мышьяком. Его излучение не отличается большой мощностью. В последнее время проводятся интенсивные работы, направленные на создание полупроводникового лазера, способного генерировать непрерывное излучение большой мощности.

Лазеры могут функционировать как на твердых телах, так и на газах. А можно ли построить лазер на жидкости? Оказалось, можно. Жидкости объединяют в себе достоинства и твердых и газообразных лазерных материалов; плотность их всего в несколько раз ниже плотности твердых тел (а не в сотни тысяч раз, как плотность газов). Значит, жидкостный лазер легко сделать таким же мощным, как лазер твердотельный. Оптическая однородность жидкостей не уступает однородности газов, а значит, позволяет использовать большие ее объемы. К тому же жидкость можно прокачивать через рабочий объем, непрерывно поддерживая ее низкую температуру и высокую активность ее атомов.

Наиболее широкое распространение получили лазеры на красителях. Называются они так потому, что их рабочая жидкость - раствор анилиновых красителей в воде, спирте, кислоте и других растворителях. Жидкостные лампы могут излучать импульсы света различной длины волны - от ультрафиолетового до инфракрасного света - и мощностью от сотен киловатт до нескольких мегаватт в зависимости от вида красителя. В последнее время разрабатываются химические лазеры, в которых атомы переходят в возбужденное состояние при действии энергии накачки химических реакций.

5.2 Волоконно-оптическая связь


На пути использования лазерного луча встали трудности: как передать его. Возникла интересная идея: а если луч пустить по гибкой трубке с зеркальными стенками? Ее можно изогнуть как угодно, а луч света будет отражаться от стенок и идти вперед. Его можно пустить и по сплошному стеклянному стержню - толщиной в несколько тысячных миллиметра стеклянному волокну. Стеклянные волокна можно собирать в жгуты разной толщины, как медные проволоки в кабеле. Тонкие стеклянные нити довольно гибки, волоконный световод можно изгибать, завязывать узлом и вообще обращаться с ним, как с обычным электрическим проводом.

В последнее время успешно развивается волоконная оптика - раздел оптики, изучающий процессы прохождения света и изображения по световодам и волноводам оптического диапазона. Передавать по ним можно не только отдельные лучи. но и целые картины. При помощи световодов можно менять размеры изображения: если взять волокно, расширяющееся от начала к концу, изображение увеличится, если сужающееся - уменьшится. Гибкие волоконные световоды позволяют тщательно осматривать внутренние детали машин и механизмов, не разбирая их: световод вводится внутрь через небольшое отверстие, свет от рампы попадает туда тоже по световоду. Таким образом можно осматривать не только машину, можно заглянуть в желудок человека и посмотреть, не угрожает ли ему язва или другая неприятность.

По одному и тому же световоду можно направить излучение второго лазера (с другой длиной волны), третьего, четвертого. Каждый из них может нести свой сигнал. По одному волокну, по стеклянной нити чуть толще волоса можно одновременно передавать 32 000 телефонных разговоров или 60 цветных телевизионных программ! Сейчас уже созданы световоды, способные работать в тех же условиях, что и обычные провода. Они выдерживают большие колебания температуры, обледенение, порывы ветра. Их можно прокладывать в земле и натягивать на столбах. Огромная пропускная способность световодов позволяет создать сеть кабельного телевидения, работающего без помех и искажений.

И вот что интересно: природа умудрилась создать даже такое сложное устройство, как волоконный световод, да еще настроенный на определенную длину волны. Хозяин этого устройства - белый медведь. Американским ученым удалось установить, что каждая шерстинка его шкуры работает как оптическое волокно. Солнечный свет нагревает шерсть, а тепловые лучи идут по шерстинкам к коже, согревая зверя.

Волоконно-оптические кабели настолько удачно сочетаются с лазерным лучом, что их сразу же решили приспособить к передаче мощных пучков света, вроде тех, что используются в промышленности. Это было нелегко, но в конце концов был создан световод, по которому можно "перекачивать" энергию от мощного импульсного или непрерывного лазера.


5.3 Перспективные направления развития лазерных технологий


Лазерные технологии по многообразию применений едва ли уступают охватившей в той или иной степени все основные сферы человеческой деятельности микроэлектронной технологии. Уникальная способность лазеров концентрировать световую энергию в пространстве, во времени и в спектральном интервале может быть использована двояко: во-первых, при нерезонансном взаимодействии мощных световых потоков с веществом в непрерывном и импульсном режимах, а во-вторых, при селективном воздействии на атомы, ионы и молекулы, вызывающем процессы фотодиссоциации, фотоионизации, фотохимической реакции. В этой связи возникли весьма перспективные быстро развивающиеся многоликие лазерные технологии, такие, как лазерная обработка материалов, лазерный термоядерный синтез, лазерная химия, лазерное воздействие на живую ткань, лазерная спектроскопия, лазерная связь и многие другие. Лазерный луч режет, сваривает, а также закаливает, сверлит, проверяет качество обработки деталей и делает множество других не менее важных дел. Обо всем этом рассказать невозможно, но кое о чем попытаемся.

Газовый лазер мощностью до 5 кВт, дающий инфракрасный луч, позволяет сваривать отдельные детали толщиной до 2 см. Шов при этом получается раза в четыре тоньше, чем при обычной электросварке, а электроэнергии тратится в три раза меньше! Лазер позволяет легко автоматизировать сварку, сваривать металлы, которые обычным способом соединить нельзя. Лучом лазера можно резать стальной лист толщиной до 40 мм. Причем не просто резать, но и вырезать из стального листа детали самой причудливой формы. Для этого лазер делается подвижным. Его движением управляет ЭВМ. При этом экономится до 15% материала. Такая лазерная установка может резать не только сталь, но и вообще любой листовой материал.

Лазерный луч может не только разрушать, но и упрочнять детали, закаливая их с поверхности. Стальная деталь при этом одевается закаленной "скорлупой", твердой и устойчивой к трению, хотя и довольно хрупкой Если такой будет вся деталь, то от удара она может расколоться, как стеклянная. Но в том-то и дело, что ее сердцевина остается упругой и вязкой: лазерная вспышка не успевает ее прогреть. Такая деталь устойчива и к ударам, и к трению, как знаменитый булат - гордость русских оружейников.

Лазер помогает сажать самолеты. Идеально прямые, яркие лучи разноцветных лазеров образуют в воздушном пространстве аэродрома разметку, по которой самолет может точно выйти на посадку. Но лазер способен не только облегчать жизнь здоровых людей, он может и лечить больных. Лазер - хирург и терапевт. Хирурги давно мечтали об инструменте, делающем бескровный разрез. Хорошо бы также, чтобы он был "понежнее". Ведь сегодня хирурги умеют делать операции на сетчатке глаза и вторгаются в святая святых организма - человеческий мозг. Орудовать там скальпелем - все равно что чинить часы топором. Современная техника предложила инструмент, сочетающий в себе очень многое, что необходимо хирургу, - световой луч.

Что может быть нежнее прикосновения луча света? Лазерным лучом можно сделать разрез шириной в тысячную долю миллиметра. В зависимости от энергии, которую он несет, и времени воздействия он может "заварить" сосуд (медики говорят: "коагулировать" его) или, наоборот, пробить в нем отверстие. Даже цвет луча оказался важен в хирургии. Кровь красная потому, что пропускает красные лучи, поглощая лучи всех других цветов. Поэтому рубиновый или гелий-неоновый лазер для "заваривания" сосудов не годится. А если использовать зеленый или синий лучи света, которые хорошо поглощаются кровью, можно добиться мгновенного образования сгустка крови, закупоривающего перерезанный сосуд. Такой свет дает аргоновый лазер. Бывают случаи, когда нужно разрушить поврежденную ткань, не затрагивая близлежащих сосудов. Тогда применяют гелий-неоновый или криптоновый лазер; луч красного цвета пройдет сквозь кровеносные сосуды, "не заметив их", не принося им вреда, прямо в нужное место с поврежденной тканью.

Особенно удобен оказался лазер в офтальмологии - области медицины, ведающей зрением. Лазерный луч можно ввести в глаз прямо через зрачок. С его помощью можно отрезать ненужный сосуд, заварить тот, который протекает, и ликвидировать кровоизлияние. Сегодня после многолетней практики лечения с помощью лазерного луча можно твердо сказать, что лазерная хирургия глаза - на правильном пути.

 

5.4 Голография и распознание образов


Однажды в музей небольшого города привезли коллекцию старинных драгоценностей. В витринах, освещенных яркими лампами, стояли маленькие застекленные шкатулки, а в них драгоценными камнями и эмалями сверкали старинные ордена и броши, тускло отсвечивали золотые кольца и браслеты работы древних мастеров, золотые самородки причудливой формы. Маленькая комната скромного провинциального музея превратилась в сказочную пещеру, заваленную несметными сокровищами: выставка была подготовлена Алмазным фондом. Посетители рассматривали драгоценности, восхищались мастерством ювелиров, дивились величине камней и их игре. Но вот настал вечер, посетители разошлись, и музей закрылся. Тогда заволновались сотрудники, дежурившие в зале: рабочий день закончился, почему же никто не приходит убирать драгоценности в сейф?! Стоимость не поддается оценке, а на окнах нет даже решеток, мало ли что! И тут в зал вошел электрик и повернул выключатель... Погасли лампы, и сразу пропали сияющие бриллианты, драгоценные эмали и золото. В витринах лежали листы стекла, мутного и как будто грязноватого. На выставке были не настоящие драгоценности, а фотопластинки с их изображениями! Но изображения эти не обычные, как на фотографиях, а объемные. Их можно рассмотреть с разных сторон и простым глазом, и в лупу, их можно фотографировать. Вот только потрогать и унести их с собой нельзя. Способ записи такого объемного изображения носит название голография, а сами такие изображения и пластинки с их записью называются голограммами. В переводе с греческого "голография" означает "полная запись": изображение на пластинку дает иллюзию настоящего предмета.

Страницы: 1, 2, 3, 4, 5, 6