рефераты

рефераты

 
 
рефераты рефераты

Меню

Исследование роста микромицетов на различных субстратах рефераты

Наибольшая скорость роста A. ustus наблюдается на среде с глицерином. Скорость роста на среде с сорбитом и целлюлозой наименьшая и в течение всего времени культивирования значительно не изменяется.

В целом, рост микромицетов на многоатомных спиртах, целлюлозе и крахмале характеризуется высокими биологическими ритмами, приходящимися на середину времени культивирования – 144-264 ч.

Таким образом, при определении способности штаммов использовать различные модельные источники углерода, было выяснено, что на сахарах наибольшая скорость роста A. niger наблюдается на среде с мальтозой, A. terreus, A. fumigatus и A. ustus проявляют наибольшую скорость роста на средах с галактозой, а A. flavus – на среде с ксилозой. На крахмале, целлюлозе и многоатомных спиртах все исследуемые штаммы проявляли высокую скорость роста, за исключением A. terreus, рост которого на среде с сорбитом вообще не наблюдался.

В среднем скорость радиального роста на других модельных субстратах составляет 0,2 мм/ч. В целом все культуры растут по классической схеме: лаг-фаза (очень маленькая 2-3 ч) – экспоненциальная фаза – стационарная фаза (не на всех средах) – стадия отмирания.


3.2 Радиальная скорость роста грибов на естественных субстратах

На рисунке 3 приведены зависимости радиальной скорости роста от времени у исследуемых грибов на различных природных целлюлозных материалах.


листья

камыш

кора

опилки

сено

Рис. 3. Радиальная скорость роста микромицетов на природных субстратах


A. fumigatus развивается на всех источниках углерода с высокой скоростью роста, за исключением среды с опилками, на которой не проявляет признаков роста. До 96 ч экспозиции радиальная скорость роста на всех средах была примерно одинакова, затем на среде с листьями наблюдается логарифмического фаза инкубационного роста (в 4 раза по сравнению с другими средами) в интервале 144 – 192 ч. На остальных средах A. fumigatus растет примерно с одинаковой скоростью, но различались ритмичностью биоритмов. На среде с камышом имеет четкие 2-суточные ритмы. В промежутке 48 – 96 ч наблюдается логарифмическая фаза роста. Стационарная фаза роста отсутствует. С 96 ч на среде с камышом радиальный рост A. fumigatus уменьшается, происходит задержка роста и с 144 ч цикл повторяется. Биоритмы большей продолжительности (4-суточные) отмечены на средах с корой и сеном. Однако на среде с корой A. fumigatus обладает несколько большей скоростью роста. На этих средах происходит замедленная логарифмическая фаза роста, затем в промежутке 96 – 192 ч культура находится в стационарной фазе, и после 192 ч экспозиции скорость роста уменьшается. К 288 ч культивирования скорость радиального роста становится примерно одинаковой на всех средах. На контрольных средах A. fumigatus растет с меньшей скоростью роста, чем на средах, содержащих в качестве единственного источника углерода природные растительные материалы.

Радиальная скорость роста A. flavus на различных источниках углеродного питания значительно не изменялась. Фаза логарифмического роста на среде с сеном приходится на 48 – 96 ч времени экспозиции, затем скорость радиального роста уменьшается. На средах с листьями, камышом и корой наблюдается замедленная лог–фаза, пик которой приходится на 192 ч времени культивирования. Также, как и A. fumigatus, A. flavus не использует опилки в качестве единственного источника углерода. На средах с листьями и сеном вид растет с 2-суточной периодичностью. Биоритмы большей продолжительности (3,5 – 4-х суток) отмечены на средах с камышом и корой. До 96 ч культивирования A. flavus на контрольных средах растет с наименьшей скоростью радиального роста, затем в промежутке 96 – 144 ч происходит интенсивная лог–фаза, и после 144 ч – радиальный рост колонии уменьшается. На контрольных средах рост A. flavus максимальный в середине экспозиции.

По данным рисунка 3 видно, что Alternaria на среде, где в качестве единственного источника углерода присутствует кора, проявляет наибольшую скорость роста с биоритмами 2-ое суток. На этой среде интенсивная лог – фаза приходится на 48 – 96 ч, затем скорость роста уменьшается, и с 144 ч – цикл повторяется. На среде с сеном Alternaria развивается с очень низкой скоростью и уже к 192 ч экспозиции прекращает рост. На средах с листьями и камышом растет с одинаковой радиальной скоростью роста до 96 ч культивирования, после на среде с листьями наступает стационарная фаза. На среде с камышом происходит скачок роста примерно в 1,5 раза. С 144 ч радиальный рост колоний на средах с листьями и камышом уменьшается. На этих средах Alternaria проявляет замедленную ритмичность (более 2-х суток). На контрольных средах культура до 96 ч растет с низкой скоростью роста, на промежутке 96 – 144 ч наблюдается фаза логарифмического роста, затем радиальный рост штамма уменьшается.

Cladosporium sp. растет на среде с корой с наибольшей скоростью роста и с периодичностью 2-ое суток. С 48 ч наступает фаза интенсивного роста, после 96 ч экспозиции скорость роста убывает, и к 10-ти суткам культивирования рост на этой среде прекращается. На среде с листьями микромицет растет с меньшей ритмичностью (более 2-суточные биоритмы). До 96 ч происходит замедленная лог- фаза, стационарная фаза отсутствует, затем радиальный рост колонии на этой среде уменьшается. С наименьшей радиальной скоростью роста Cladosporium развивается на средах с камышом и сеном с биоритмами четверо суток и к 192 ч экспозиции наступает фаза отмирания культуры. На всех средах, за исключением контрольных рост штамма прекращается еще до 14 дней культивирования. На контролях 1 и 2 рост примерно одинаковый со средней скоростью роста.

Verticillium sp. на средах с листьями и камышом в начале культивирования растет с одинаковой скоростью роста с 2-суточными биоритмами. До 48 ч наблюдается фаза инкубационного роста, затем рост культуры идет к убыванию. С 96 ч до 192 ч экспозиции на этих средах происходит фаза стационарного роста, после рост колонии снова уменьшается. На среде с корой микромицет растет с наибольшей скоростью роста с периодичностью в 2-ое суток. На этой среде до 48 ч наблюдается лог – фаза, затем наступает стационарная фаза роста. После рост снова увеличивается в промежутке 96 – 144 ч, затем скорость роста падает. Примерно с такой же радиальной скоростью роста Verticillium растет на среде с сеном, но с замедленной ритмичностью (более 2-х суток). На контролях 1 и 2 рост Verticillium примерно одинаковый со средней скоростью роста. С 48 ч до 96 ч культивирования длится фаза интенсивного логарифмического роста, затем радиальный рост идет к уменьшению на среде контроль 2. С 96 ч на контроле 1, а с 144 ч на контроле 2 наступает стационарная фаза. После рост на этих средах увеличивается, и с 240 ч культивирования скорость роста идет к падению.

Penicillium sp. – единственный из исследуемых штаммов, использующий опилки в качестве единственного источника углерода. Рост начинается с 48 суток культивирования, и развивается на этой среде с более 2-суточной периодичностью. На средах с листьями и камышом микромицет растет с наибольшей радиальной скоростью роста и с 2-суточными биоритмами. К 192 ч экспозиции на среде с листьями рост прекращается, наступает фаза отмирания культуры, также как и на среде с сеном. Penicillium с наименьшей скоростью роста растет на средах с корой и сеном с ритмичностью в 2-ое суток. На контрольных средах рост максимальный, особенно на среде с сахарозой. На контроле 1 с 144 ч наблюдается фаза логарифмического роста, после 192 ч рост культуры заметно падает. На контрольной среде 2 штамм до 144 ч растет с низкой скоростью роста, затем наступает стационарная фаза, после 192 ч экспозиции радиальный рост колонии уменьшается.

Уже на первые сутки культивирования Trichoderma хорошо развивается на всех средах, кроме среды с опилками, на которой роста колонии не обнаружено. На средах с листьями, корой и камышом микромицет растет с 2-суточной периодичностью. На этих средах в промежутке 48 – 96 ч происходит фаза усиленного логарифмического роста, затем радиальный рост уменьшается. С очень низкой скоростью роста и с замедленной ритмичностью (более 2-суточная) Trichoderma растет на среде с сеном. К 240 ч культивирования рост на всех средах прекращается, за исключением среды с листьями. Рост культуры на контрольных средах примерно одинаковый, до 96 ч наступает лог – фаза роста, после скорость роста падает. С 144 ч до 240 ч экспозиции радиальный рост снова увеличивается. В среднем скорость радиального роста не превышает 0,4 мм/ч у всех штаммов, за исключением A. fumigatus, радиальный рост которого на листьях достигает 0,8 мм/ч. Trichoderma sp. на всех растительных субстратах растет с радиальной скоростью роста ниже 0,2 мм/ч.

Анализируя полученные данные, можно отметить предпочтения исследуемых штаммов к тому или иному источнику углерода. Вид A. fumigatus предпочитает среду с листьями, A. flavus – среды с листьями и сеном, Alternaria, Cladosporium и Trichoderma sp. – среду с корой, Penicillium sp. – среды с листьями, камышом и опилками. Большинство изученных штаммов обладали 2-суточными биоритмами. Необходимо отметить, что штаммы с наибольшей продолжительностью биоритмов (более чем 2-ое суток) растут с невысокой скоростью роста.

3.3 Прорастание спор в капле субстрата


Результаты эксперимента по прорастанию спор исследуемых микромицетов на поверхности растительных субстратах представлены на рисунке 4.


листья

кора

камыш

опилки

сено


















Рис. 4. Зависимость прорастания спор микромицетов от времени на природных целлюлозных гидролизатах.


Из рисунка 4 видно, что на всех субстратах с увеличением времени экспозиции заметно возрастает процент прорастания спор. На гидролизате листьев все грибы растут примерно с одинаковой скоростью, к 15-м суткам достигая 80 % прорастания от общего количества спор.

На гидролизате коры на 15-е сутки наблюдения видно, что хорошо прорастают (80 %) почти все культуры, за исключением A. fumigatus (около 70%) и Trichoderma sp. (около 60%).

Наибольший процент прорастания (85 %) на гидролизате камыша наблюдается у A. fumigatus. Остальные микромицеты растут примерно с одинаковой скоростью, к 15-м суткам процент прорастания находится в пределах 70-80 %.

На гидролизате опилок у Cladosporium sp. выявляется наибольший процент прорастания (более 80 %). У Alternaria sp. и Verticillium sp. процент прорастания не достигает 70 %. Остальные культуры прорастают в пределах 70 – 80 % от общего количества.

На протяжении всей экспозиции высокий процент прорастания на гидролизате сена проявляют A. fumigatus, A. flavus (более 70 %) и Verticillium sp. (около 70 %). Остальные микромицеты растут примерно с одинаковой скоростью, и к 15-м суткам наблюдения достигая 60 % прорастания.

При учитывании длин проростков, обнаружились следующие особенности роста микромицетов: наибольшие длины проростков A. fumigatus обнаружены на гидролизатах камыша, листьев; A. flavus, Trichoderma sp. – на коре и листьях; Cladosporium sp., Verticillium sp. – на опилках, коре и листьях; Alternaria sp. – на листьях; Penicillium sp. – на гидролизате коры.


ВЫВОДЫ

1) При определении способности штаммов использовать модедьные источники углерода, было выяснено, что из сахаров A. niger отдает предпочтение мальтозе; A. terreus, A. flavus и A. ustus предпочитают среду с единственным источником углерода в виде галактозы, а A. fumigatus – среду с арабинозой. На крахмале и многоатомных спиртах все исследуемые штаммы проявляли высокую скорость роста, за исключением A. terreus, рост которого на среде с сорбитом вообще не наблюдался. В среднем скорость радиального роста на сахарах не превышает 0,4 мм/ч, а на других модельных субстратах составляет 0,2 мм/ч.

2) При определении способности штаммов использовать природные растительные материалы в качестве единственного источника углерода, обнаружено, что все штаммы также хорошо развиваются, как и на модельных субстратах. Только опилки как единственный источник углерода использовал только Penicillium sp. В среднем скорость радиального роста не превышает 0,4 мм/ч. Также можно отметить предпочтения исследуемых штаммов к тому или иному источнику углерода. Вид A. fumigatus предпочитает среду с листьями, A. flavus – среды с листьями и сеном, Alternaria, Cladosporium и Trichoderma sp. – среду с корой, Penicillium sp. – среды с листьями, камышом и опилками.

3) Определение способности микромицетов к ассимиляции различных природных субстратов методом проращивания грибных зачатков выявило следующие особенности роста микромицетов: наибольшие длины проростков A. fumigatus обнаружены на гидролизатах камыша, листьев; A. flavus, Trichoderma sp. – на коре и листьях; Cladosporium sp., Verticillium sp. – на опилках, коре и листьях; Alternaria sp. – на листьях; Penicillium sp. – на гидролизате коры.


СПИСОК ЛИТЕРАТУРЫ


1)                Андреюк, Е. И. Микробная коррозия и ее возбудители [Текст] / Е. И. Андреюк, В. И. Билай, Э. З. Коваль, И. А. Козлова. – Киев : Наук. думка, 1980. – 286 с. ; 22 см. – Библиогр.: с. 156. – 200 экз.

2)                Бабьева, И. П. Изменения численности микроорганизмов в почвах при загрязнении тяжелыми металлами [Текст] / И. П. Бабьева, С. В. Левин, Н. С. Решетова // Тяжелые металлы в окружающей среде. – М. : Изд-во Моск. ун-та, 1980. – С. 115. – Библиогр.: с. 75.

3)                Бабьева, Е. Н. Сравнительно-экологические исследования микромицетов из почв отдаленных географических районов [Текст] / Е. Н. Бабьева // Микология и фитопатология. Сер. 17. – 1983. – № 2. – С. 452-453. – Библиогр.: с. 452-453.

4)                Биоповреждения [Текст] / Под ред. В. Д. Ильичева. – М. : Изд-во Моск. ун-та, 1987. – 352 с. ; 24 см. – Библиогр.: с. 207–208. – 200 экз. – ISBN 5-02634-675-3.

5)                Блажеевская, Ю. В. Сравнительный анализ скорости радиального роста микромицетов, выделенных из различных экотопов [Текст] / Ю. В. Блажеевская, В. В. Вембер, Н. Н. Жданова // Микробиологический журнал. – 2002. – Т. 64. – № 3. – С. 3–11. – Библиогр.: с. 49-50.

6)                Богомолова, Е. В. Морфологические особенности микроколониальных грибов, изолированных с поверхности камня [Текст] / Е. В. Богомолова, М. С. Зеленская, Д. Ю. Власов // Микология и фитопатология. Сер. 35. – 2001. - № 3. – С. 6–13. – Библиогр.: с. 17.

7)                Бухало, А. С. Высшие съедобные базидиомицеты в чистой культуре [Текст] / А. С. Бухало. – Киев : Наук. думка, 1988. – 144 с. ; 21 см. – Библиогр.: с. 76. – 3000 экз.

8)                Великанов, Л. Л. Некоторые биохимические аспекты в экологии грибов [Текст] / Л. Л. Великанов, И. И. Сидорова // Успехи микробиологии. Сер. 3. – 1983. - № 18. – С. 112–132. – Библиогр.: с. 128.

9)                Воронин, Л. В. Микрофлора некоторых видов рыб Куйбышевского водохранилища [Текст] / Л. В. Воронин // Биология внутр. вод. – 1999 - № 76. – С. 11–15. – Библиогр.: с. 13.

10)            Гарибова, Л. В. Основы микологии: Морфология и систематика грибов и грибоподобных организмов [Текст] : учеб. пособие / Л. В. Гарибова, С. Н. Лекомцева – М. : Товарищество научных изданий КМК, 2005. – 202 с. ; 25 см. – Библиогр.: с. 196–199. – 2000 экз. – ISBN 5-87317-265-X.

11)            Григорьев, А. М. Изучение роста фрагментов мицелия Fusarium oxysporum в условиях разной кислотности среды [Текст] / А. М. Григорьев, М. В. Горленко, О. Е. Марфенина // Микология и фитопатология. – 2004. – № 3. – С. 29–35. – Библиогр.: с. 30–31.

12)            Долгова, А. В. Рост колоний Penicillium chrysogenum Thom. при постоянных и переменных температурах [Текст] / А. В. Долгова, В. В. Зданович // Микология и фитопатология. Сер. 31. – 1997. - № 1. – С. 52–56. – Библиогр.: с. 55.

13)            Дудка, И. А. [Текст] Водные несовершенные грибы СССР / И. А. Дудка. – Киев : Наук. думка, 1985. – 188 с. ; 24 см. – Библиогр.: с. 154. – 1500 экз. – ISBN 5-137-06374-4.

14)            Евдокимова, Г. А. Микробиологическая активность почв при загрязнении тяжелыми металлами [Текст] / Г. А. Евдокимова // Почвоведение. – 1982. - № 6. – С. 125 – 132. – Библиогр.: с. 130.

15)            Звягинцев, Д. Г. Биология почв [Текст] : учебник / Д. Г. Звягинцев, И. П. Бабьева, Г. М. Зенова – 3-е изд., испр. и доп. – М. : Изд-во МГУ, 2005. – 445 с. : ил. ; 25 см. – Библиогр.: с. 373–375 – 3000 экз. – ISBN 5-211-04983-7.

16)            Иванова, А. Е. Жизнеспособность фрагментов мицелия почвенных микроскопических грибов в разных экологических условиях [Текст] : автореф. канд. дис…; утверждена; защищена 30.03.99. / Иванова Анна Евгеньевна. – М. : МГУ, 1999. – 30 с.

17)            Иванова, А. Е. Влияние экологических факторов на способность к росту фрагментов мицелия и прорастание спор микроскопических грибов [Текст] / А. Е. Иванова, О. Е. Марфенина // Микробиология. – 2001. – № 2. – С. 235–240. – Библиогр.: с. 236.

Страницы: 1, 2, 3, 4, 5