рефераты

рефераты

 
 
рефераты рефераты

Меню

Естествознание 20 века рефераты

Если в первой половине истекшего столетия прогресс в области изучения макромолекул был еще сравнительно медленным, то во второй половине этого столетия, т. е. в эпоху НТР, эти исследования существенно ускорялись благодаря технике физических методов анализа. На основе полученных данных о структуре живого вещества удалось воссоздать строение ряда белков и полипептидных гормонов, а также синтезировать некоторые менее сложные вещества. Химия белков, которая ранее казалась малоперспективной областью естествознания, выдвинулась на передний край науки, а раскрытие в середине XX века структуры дезоксирибонуклеиновой кислоты (ДНК) послужило началом интенсивных исследований в химии и биологии.

Было выяснено, что нуклеиновые кислоты, являющиеся носителем и передатчиком наследственных качеств и играющие основную роль в синтезе клеточных белков, образуют группы веществ, важность которых трудно переоценить. Выдвинутая в начале 50-х годов гипотеза, согласно которой должны существовать особые молекулы нуклеиновых кислот, выполняющие функции перевода языка нуклеиновых кислот на язык белков, достаточно скоро получила экспериментальное подтверждение. К началу 60-х годов у ученых-биологов уже сложилось четкое понимание основных процессов передачи информации в клетке при синтезе белка. Дальнейший прогресс исследований в этой области позволил известному советскому биологу Ю.А. Овчинникову констатировать в начале 80-х годов, что «наибольших успехов биологическая наука достигла в последние 20-25 лет, когда она сумела заглянуть внутрь живой клетки и понять биологические механизмы на уровне молекулярных взаимодействий».

Однако развитие биологической науки в СССР шло далеко не гладко. Мощный идеологический прессинг привел к фактическому свертыванию на длительный период отечественных исследований в области генетики. В августе 1940 года был репрессирован наиболее видный представитель отечественной генетики, президент Всесоюзной академии сельскохозяйственных наук СССР (ВАСХНИЛ) Н.И. Вавилов (он погиб в тюрьме в 1943 году). Печально известная сессия ВАСХНИЛ, проходившая с 30 июля по 7 августа 1948 года, «предала анафеме» реакционный «менделизм — вейсманизм — морганизм», т. е. учения иностранных основателей современной генетики: чеха Грегора Менделя (1833-1884), немца Августа Вейсмана (1834-1914) и американца Томаса Моргана (1866-1945). С основным докладом «О положении в биологической науке», задавшим тон указанной сессии, выступил новый президент ВАСХНИЛ, «народный академик» Т.Д. Лысенко.

«Политика партии в области биологии» распространялась и на другие науки. Была отвергнута кибернетика, основывающаяся на аналогии между функциями управления в живых организмах и в определенных автоматических устройствах. Последняя была объявлена «буржуазной лженаукой». И эта идеологическая установка продержалась почти до конца 50-х годов. А ведь именно кибернетика составила одно из важных направлений научно-технической революции второй половины XX века.

Труднее для партийных идеологов оказалось дело с физикой, ибо именно от физиков зависело создание атомной бомбы. Уже наготове была команда (главным образом, из работников московских вузов), предназначенная для выступления против академических ученых-физиков. И если бы испытания первой советской атомной бомбы закончились неудачей, идеологический погром в физике был бы неизбежен. Рождение ядерного щита страны разрядило идеологически накаленную атмосферу. По словам академика В.И. Гольданского, «взрыв атомной бомбы в 1949 году спас советскую физику».

Отмеченные выше достижения в области атомной физики и биологии, а также появление кибернетики обеспечили естественнонаучную основу первого этапа НТР, начавшегося в середине XX века и продолжавшегося примерно до середины 70-х годов. Основными техническими направлениями этого этапа НТР стали атомная энергетика, электронно-вычислительная техника (явившаяся технической базой кибернетики) и ракетно-космическая техника. В последней, как и в атомной энергетике, избежавшей «идеологических передряг», СССР с самого начала занял ведущее место в мире.

Со второй половины 70-х годов начался второй этап НТР, продолжающийся до сих пор. Важной характеристикой второго этапа НТР стали новые технологии, которых не было в середине XX века. К ним относятся гибкие автоматизированные производства, лазерная технология, биотехнология и др. По мнению наиболее авторитетного научного органа США — Национального научного совета, «никогда еще в истории естествознания не существовало такого спектра научных и технологических возможностей, как, например, в области сверхпроводимости или биотехнологии».

«Становление биотехнологии связано с успехами биологии в познании особенностей организации молекулярных структур живого и процессов этого уровня, осуществлением искусственного синтеза отдельных генов и их включения в геном бактериальной клетки. Это позволяет контролировать основные процессы биосинтеза в клетке, создавать такие генетические системы бактериальной клетки, которые способны осуществлять биосинтез определенных соединений в промышленных условиях. На решение таких задач ориентируется ряд направлений биотехнологии».

«Биологическая технология определила возникновение нового типа производства — биологизированного. Примером такого производства могут быть предприятия микробиологической промышленности... Биологизация производства — это новый этап научно-технического прогресса, когда наука о живом превращается в непосредственную производительную силу общества и ее достижения используются для создания промышленных технологий».

Значение генной инженерии на втором этапе НТР характеризуется существенным расширением ее диапазона: от получения новых микроорганизмов с заранее заданными свойствами (путем направленного изменения их наследственного аппарата) и до клонирования высших животных (а в возможной перспективе — и самого человека). Конец XX столетия ознаменовался небывалыми успехами в расшифровке генетической основы человека. В 1990 году «стартовал» международный проект «Геном человека», ставящий целью получение полной генетической карты Homo sapiens. В этом проекте принимают участие более двадцати наиболее развитых в научном отношении стран, включая и Россию.

Важной характеристикой второго этапа НТР стала невиданная ранее информатизация общества на основе персональных компьютеров (появившихся в конце 70-х годов) и Всемирной системы общедоступных электронных сетей, получившей наименование «Интернет». В результате человек, во-первых, получил доступ к объемам информации значительно большим, чем когда бы то ни было; а во-вторых, появился новый способ общения, который можно назвать горизонтальным. До его появления общение и распространение информации было в основном вертикальным (автор выпускает книгу — читатели читают, по радио и телевидению что-то передают — люди слушают это или смотрят; обратная связь ранее почти отсутствовала, хотя потребность в ней всегда была исключительно высока). Интернет обеспечивает распространение информации для практически неограниченного круга потребителей, причем они без всякого труда могут коммуникатировать друг с другом. «Интернет — это сеть сетей с миллионами компьютеров по всему миру, связанных в одно целое. В Интернете не существует единого центра управления. Интернет можно описать как постоянный поток информации из одного места в другое, от одного человека к другому. Когда вы получаете доступ к Интернету, то подключаетесь к миллионам пользователей компьютеров... Это всемирное круглосуточное место встречи, куда может прийти любой».

Еще одним направлением второго этапа НТР, заложившим физические основы принципиально новых информационных и коммуникационных технологий, стали исследования в области физики полупроводниковых наногетероструктур. Достигнутые успехи в этих исследованиях, имеющие огромное значение для развития оптоэлектроники и электроники высоких скоростей, были отмечены в 2000 году Нобелевской премией по физике, которую разделили российский ученый, академик Ж.И. Алферов и американские ученые Г. Кремер и Дж. Килби.

На повестке дня современной физики — создание квантового компьютера (КК). Здесь существует несколько интенсивно разрабатываемых в настоящее время направлений: твердотельный КК на полупроводниковых структурах, жидкие компьютеры, КК на «квантовых нитях», на высокотемпературных полупроводниках и т. д. Фактически все разделы физики конца XX века представлены в попытках решения этой задачи.

Пока можно говорить лишь о достижении некоторых предварительных результатов. Квантовые компьютеры еще только проектируются. Но когда они покинут пределы лабораторий, мир во многом станет иным. Ожидаемый технологический прорыв должен превзойти достижения полупроводниковой революции, в результате которой вакуумные электронные лампы уступили место кремниевым кристаллам.

Но произойдет это, по-видимому, уже на третьем этапе НТР, контуры которого лишь вырисовываются. По прогнозам ученых, этот новый этап НТР наступит не ранее конца первого десятилетия XXI века.


3. Панорама современного естествознания


В XX веке естествознание развивалось невероятно быстрыми темпами. Его развитие стимулировалось потребностями практики. Развивающаяся быстрыми темпами промышленность требовала новых технологий, в основе которых лежало естественнонаучное знание. Мощным стимулятором для развития науки и техники были мировые войны, а также экономическое и военное противостояние двух военно-политических блоков, во главе которых стояли СССР и США. Развитые промышленные страны начинают выделять большие средства на развитие системы образования, подготовку и воспроизводство научных кадров. Расширяется сеть научно-исследовательских учреждений, финансируемых как государством, так и частными компаниями.

Наука перестает быть частным делом, какой она была в XVIII-XIX веках, когда ее развивали любознательные самоучки: адвокаты, священники, медики, ремесленники и т. д. Наука становится профессией огромного числа людей. Современные исследования показывают, что развитие науки может быть выражено экспоненциальным законом. Объем научной деятельности удваивается каждые 10-15 лет. Это проявляется в ускорении роста количества научных открытий и научной информации, а также числа людей, занятых на науке.

По данным ЮНЕСКО, до начала 70-х годов XX века число научных работников ежегодно увеличивалось на 7 %, в то время как численность всего населения росла всего лишь на 1,7 % в год. В результате получается, что нашими современниками являются более 90 % ученых от их общего числа за всю историю науки.

В конце XIX века во всем мире было около 50 тыс. человек, занятых в сфере науки и только около 15 тыс. человек из них непосредственно занимались научно-исследовательской деятельностью. 50 лет спустя научными исследованиями занимались уже примерно 400 тыс. человек, а общее число научных работников приблизилось к 2 млн.

В этот период ежегодный рост расходов на науку составлял от 10 до 25 % в год. Такие темпы значительно превышали темпы роста расходов на другие цели, в том числе военных расходов. Если в конце XIX века научные открытия совершались в маленькой лаборатории профессора или мастерской изобретателя, то в 20-30 годы XX века начинается эпоха промышленной науки, крупных научно-исследовательских центров, расходующих десятки и сотни тысяч долларов. С конца XIX века наука начинает себя окупать. Капитал, вложенный в научные разработки, начинает приносить прибыль.

В XX веке наука изменяет не только сферу производства, но и быт. Радио, телевидение, магнитофоны, компьютеры становятся обиходными вещами: так же как одежда из синтетических тканей, стиральные порошки, лекарства и т. д.

Все это характеризует как бы внешнюю сторону развития науки нашего времени. Теперь рассмотрим, какие важнейшие научные открытия были сделаны за последние 70-80 лет.

Физика: учение об атомах

В физике можно выделить три основных направления: исследование микромира (микрофизика), макромира (макрофизика) и мегамира (астрофизика).

Прогресс физики после ряда выдающихся открытий конца XIX — начала XX века (рентгеновские лучи, электрон, радиоактивность и др.) был задержан первой мировой войной, и все же исследования атомов продолжались. Основное в этих исследованиях:

Разработка модели атома.

Доказательство изменяемости атома.

Доказательство существования разновидностей атома у химических элементов.

Эти исследования опирались практически на совершенно новое представление о структуре материи, которое начало складываться в начале XX века. Сформулированное в XIX в. представление об атомах было подытожено Д.И. Менделеевым, который в статье «Вещество», опубликованной в 1892 г. в «Энциклопедическом словаре Брокгауза и Ефрона», перечислил основные сведения об атомах:

Химические атомы каждого элемента неизменны, и существует столько сортов атомов, сколько известно химических элементов (в то время — примерно 70).

Атомы данного элемента одинаковы.

Атомы имеют вес, причем различие атомов основано на различии их веса.

Взаимный переход атомов данного элемента в атомы другого элемента невозможен.

Доказательство существования электрона разрушило эти представления об атоме. Важнейшим направлением исследований физики становится выяснение структуры атомов. Электронные модели атома стали появляться одна за другой. Их возникновение в хронологической последовательности таково:

Модель У. Кельвина (1902 г.) — электроны распределяются определенным способом внутри положительно заряженной сферы.

Модель Ф. Ленарда (1903 г.) — атом состоит из «дуплетов» отрицательных и положительных зарядов (так называемых динамит).

Модель Г. Нагаоки (1904 г.) — атом «устроен» наподобие планеты Сатурн (вокруг положительно заряженного тела располагаются кольца, состоящие из отрицательно заряженных электронов).

Модель Дж. Томсона (1904 г.) — внутри положительно заряженной сферы вращающиеся электроны размещаются в одной плоскости по концентрическим оболочкам, вмещающим различные, но конечные числа электронов.

Эти модели были результатами теоретических (во многом — чисто математических) построений и носили формальный характер. Исключение составляла модель Дж. Томсона. Он предпринял первую в своем роде попытку объяснения периодического изменения свойств химических элементов, связав феномен периодичности с числом электронов в концентрических кольцах.

Однако оставалось неопределенным точное количество электронов в атомах. Томсон полагал, что масса носителя единичного положительного заряда значительно превосходит массу единичного отрицательного заряда, и это также оказалось соответствующим истине.

Электрон довольно скоро исчерпал свои возможности в качестве единственного «строительного материала» атомов, но эти перечисленные модели, безусловно, сыграли роль в подготовке будущей планетарной модели атома. Почти каждая из них в той или иной форме содержала элементы действительности.

Появление резерфордовской модели стало возможным благодаря подключению исследований радиоактивности, причем не столько само явление, сколько изучение действия частиц, испускаемых в ходе радиоактивного распада, на вещества. Именно анализ рассеивания частиц различными материалами позволил Э. Резерфорду в 1911 году высказать идею о существовании в атоме массивного заряженного тела — ядра (сам термин «ядро» был введен Резерфордом в 1912 году).

Применив к резерфордовской модели квантовую теорию, Н. Бор (1913 г.) устранил противоречие этой модели классической электродинамики. Поэтом именно ядерная модель Резерфорда в интерпретации Бора стала основным понятием новой атомистики.

На протяжении почти двух десятилетий господствовала протонно-электронная модель ядра. Неверная по своей сути, она, тем не менее, ни чуть не мешала широкому распространению и использованию классической атомной модели целиком. Но только после открытия Дж. Чедвиком в 1932 г. нейтрона возникли современные представления о протоно-нейтронной модели ядра.

Итак, следствием фундаментальных физических открытий конца XIX века оказалась разработка структуры атома в целом. «Бесструктурный» атом уступил место новому атому как сложной системе частиц.

После того как нейтрон был признан и нашел свое место как протон, лишенный своего положительного заряда, было обнаружено, что он представляет собой центральную фигуру в структуре ядра. Очень скоро после этого К. Андерсон открыл другую элементарную частицу — положительный электрон. Позитрон обеспечил необходимую симметрию между положительным и отрицательным во взаимоотношениях частиц. Оказалось, что взаимоотношения нейтрона и протона отнюдь не являются простыми. И если раньше полагалось, что ядро состоит из протонов и электронов, то теперь было обнаружено, что значительно правильнее будет сказать, что оно состоит из протонов и нейтронов, связанных вместе мощными силами, которые Юкава приписал в 1935 году гипотетической промежуточной частице — мезону. Здесь мы видим пример элементарной частицы, которая сначала была предсказана теоретически, а затем, в 1936 году, фактически наблюдалась К. Андерсоном и Неддермейером.

Действие нейтронов на различные ядра было изучено за короткий промежуток времени в 6 лет, с 1932 по 1938 год. То были годы, когда наука вообще и физика в особенности все больше чувствовала на себе влияние событий, приводящих ко второй мировой войне.

Решающее открытие принадлежало Жолио Кюри, который нашел, что почти все атомы, подвергнутые бомбардировке нейтронами, сами становятся радиоактивными. Логическое следствие этого открытия было огромным. Знание атомных превращений могло быть использовано для объяснения того, каким образом возникли элементы.

Этой концепцией воспользовались Гамов и Бете для выявления источника солнечной энергии. Таким источником является соединение четырех атомов водорода, в результате чего образуется один атом гелия. Было уже совершенно очевидно, что источником большей части энергии Вселенной служат ядерные процессы. В 1936 году Ферми подверг бомбардировке нейтронами тяжелые элементы и заявил, что получил ряд элементов с большим весом, чем у любых других элементов, найденных в природе.

Вплоть до 1937 года все имевшие место радиоактивные изменения заключались в том, что маленькие частицы либо присоединялись к ядру, либо выбрасывались из него. Наиболее крупным из выброшенных осколков была частица, содержащая два протона и два нейтрона. Однако в 1937 году Ган и Штрассман нашли, что некоторые из продуктов, полученных в результате облучения урана нейтронами, имели в общем массу, составляющую чуть ли не половину массы атома урана. Было ясно, что имеет место деление ядра.

Страницы: 1, 2, 3, 4, 5, 6, 7