рефераты

рефераты

 
 
рефераты рефераты

Меню

Биохимический контроль в спорте рефераты

Альбумины и глобулины. Это низкомолекулярные основные белки плазмы крови. Альбумины составляют 50—60 % всех белков сыворотки крови, глобулины — 35—40 %. Они выполняют разнообразные функции .в организме: входят в состав иммунной системы, особенно глобулины, и за­щищают организм от инфекций, участвуют в поддержании рН крови, транс­портируют различные органические и неорганические вещества, использу­ются для построения других веществ. Количественное соотношение их в сыворотке крови в норме относительно постоянно и отражает состояние здоровья человека. Соотношение этих белков изменяется при утомлении, многих заболеваниях и может использоваться в спортивной медицине как диагностический показатель состояния здоровья.

Мочевина. При усиленном распаде тканевых белков, избыточном пос­туплении в организм аминокислот в печени в процессе связывания токси­ческого для организма человека аммиака (МН3) синтезируется нетоксичес­кое азотсодержащее вещество — мочевина. Из печени мочевина поступа­ет в кровь и выводится с мочой.

Концентрация мочевины в норме в крови каждого взрослого человека индивидуальна — в пределах 3,5—6,5 ммоль • л~1. Она может увеличиваться до 7—8 ммоль • л~1 при значительном поступлении белков с пищей, до 16— 20 ммоль • л~1 — при нарушении выделительной функции почек, а также после выполнения длительной физической работы за счет усиления ката­болизма белков до 9 ммоль • л"1 и более.

В практике спорта этот показатель широко используется при оценке переносимости спортсменом тренировочных и соревновательных физи­ческих нагрузок, хода тренировочных занятий и процессов восстановления организма. Для получения объективной информации концентрацию моче­вины определяют на следующий день после тренировки утром натощак. Если выполненная физическая нагрузка адекватна функциональным воз­можностям организма и произошло относительно быстрое восстановление метаболизма, то содержание мочевины в крови утром натощак возвраща­ется к норме (рис.1). Связано это с уравновешиванием скорости синтеза и распада белков в тканях организма, что свидетельствует о его восстановлении. Если содержание мочевины на следующее утро остается выше нормы, то это свидетельствует о недовосстановлении организма ли­бо развитии его утомления.

Обнаружение белка в моче. У здорового человека белок в моче отсут­ствует. Появление его (протеинурия) отмечается при заболевании почек (нефрозы), поражении мочевых путей, а также при избыточном поступлении белков с пищей или после мышечной деятельности анаэробной направлен­ности. Это связано с нарушением проницаемости клеточных мембран почек из-за закисления среды организма и выхода белков плазмы в мочу.

По наличию определенной концентрации белка в моче после выполне­ния физической работы судят о ее мощности. Так, при работе в зоне боль­шой мощности она составляет 0,5 %, при работе в зоне субмаксимальной мощности может достигать 1,5 %.




-8-

Рис. 1

Содержание

мочевины в крови

гребцов во время

отдыха (1,5 ч, 5 ч и

утром после

тренировочного дня):

1 — полное

восстановление;

2, 3 разная

степень

недовосстановления


Исходное

содержание

мочевины


1,5ч



Утро

следующего дня



Креатинин. Это вещество образуется в мышцах в процессе распада креатинфосфата. Суточное выделение его с мочой относительно постоян­но для данного человека и зависит от мышечной массы тела. У мужчин оно составляет 18—32 мг • кг"1 массы тела в сутки, у женщин — 10—25 мг • кг"1. По содержанию креатинина в моче можно косвенно оценить скорость креатинфосфокиназной реакции, а также содержание мышечной массы тела. По количеству креатинина, выделяемого с мочой, определяют содержание тощей мышечной массы тела согласно следующей формуле:

тощая масса тела = 0,0291 х  креатинин мочи (мг • сут~1) + 7,38.

Изменение количества тощей массы тела свидетельствует о снижении или увеличении массы тела спортсмена за счет белков. Эти данные важ­ны в атлетической гимнастике и силовых видах спорта.

Креатин. В норме в моче взрослых людей креатин отсутствует. Обна­руживается он при перетренировке и патологических изменениях в мыш­цах, поэтому наличие креатина в моче может использоваться как тест при выявлении реакции организма на физические нагрузки.

В моче у детей раннего возраста креатин постоянно присутствует, что связано с преобладанием его синтеза над использованием в скелетных мышцах.

Показатели кислотно-основного состояния (КОС) организма

В процессе интенсивной мышечной деятельности в мышцах образуется большое количество молочной и пировиноградной кислот, которые диф­фундируют в кровь и могут вызывать метаболический ацидоз организма, что приводит к утомлению мышц и сопровождается болями в мышцах, го­ловокружением, тошнотой. Такие метаболические изменения связаны с истощением буферных резервов организма. Поскольку состояние буфер­ных систем организма имеет важное значение в проявлении высокой фи­зической работоспособности, в спортивной диагностике используются по­казатели КОС. К показателям КОС, которые в норме относительно посто­янны, относятся:

•    рН крови (7,35—7,45);

•    рСО2 — парциальное давление углекислого газа (Н2СО3 + СО2) в кро­ви (35-—45 мм рт. ст.);

•    5В — стандартный бикарбонат плазмы крови НСОд, который при полном насыщении крови кислородом составляет 22—26 мэкв • л"1;

•    ВВ    буферные  основания   цельной   крови   либо   плазмы   (43— 53 мэкв -л"1) — показатель емкости всей буферной системы крови или плазмы;

•    Л/86 — нормальные буферные основания цельной крови при физио­логических значениях рН и СО2 альвеолярного воздуха;

•    ВЕ   избыток  оснований,   или   щелочной   резерв   (от  —2,4  до +2,3 мэкв -л"1) — показатель избытка или недостатка буферной емкости (ВВ - ЫВВ = ВЕ).

Показатели КОС отражают не только изменения в буферных системах крови, но и состояние дыхательной и выделительной систем организма. Состояние кислотно-основного равновесия (КОР) в организме характери­зуется постоянством рН крови (7,34—7,36). Установлена обратная коре-



ТАБЛИЦА   3

Изменение

кислотно-основного

состояния

организма



Кислотно-основное состояние

рН мочи

Плазма НС03, ммоль • л~'

Плазма Н2С03, ммоль • л '

Норма

6—7

25

0,625

Дыхательный ацидоз

Дыхательный алкалоз

Метаболический ацидоз

Метаболический алкалоз


Примечание. Направление стрелки указывает на повышение или пони­жение показателей

ляционная зависимость между динамикой содержания лактата в крови и изменением рН крови. По изменению показателей КОС при мышечной де­ятельности можно контролировать реакцию организма на физическую на­грузку и рост тренированности спортсмена, поскольку при биохимическом контроле КОС можно определять один из этих показателей.

Наиболее информативным показателем КОС является величина ВЕ щелочной резерв, который

-9-

увеличивается с повышением квалификации спортсменов, особенно специализирующихся в скоростно-силовых видах спорта. Большие буферные резервы организма являются серьезной пред­посылкой для улучшения спортивных результатов в этих видах спорта.

Активная реакция мочи (рН) находится в прямой зависимости от кис­лотно-основного состояния организма. При метаболическом ацидозе кис­лотность мочи увеличивается до рН 5, а при метаболическом алкалозе снижается до рН 7. В табл. 3 показана направленность изменения значе­ний рН мочи во взаимосвязи с показателями кислотно-основного состоя­ния плазмы (по Т.Т. Березову и Б.Ф. Коровкину, 1998).

Биологически активные вещества регуляторы обмена веществ

Ферменты. Особый интерес в спортивной диагностике представляют тка­невые ферменты, которые при различных функциональных состояниях ор­ганизма поступают в кровь из скелетных мышц и других тканей. Такие ферменты называются клеточными, или индикаторными. К ним относятся альдолаза, каталаза, лактатдегидрогеназа, креатинкиназа и др. Для от­дельных клеточных ферментов, например лактатдегидрогеназы скелетных мышц, характерно наличие нескольких форм (изоферментов). Появление в крови индикаторных ферментов или их отдельных изоформ, что связано с нарушением проницаемости клеточных мембран тканей, может использо­ваться при биохимическом контроле за функциональным состоянием спортсмена.

В спортивной практике часто определяют наличие в крови таких тка­невых ферментов процессов биологического окисления веществ, как аль­долаза — фермент гликолиза и каталаза — фермент, осуществляющий восстановление перекисей водорода. Появление их в крови после физи­ческих нагрузок является показателем неадекватности физической нагруз­ки, развития утомления, а скорость их исчезновения свидетельствует о скорости восстановления организма.

После выполненных физических нагрузок в крови могут появляться отдельные изоформы ферментов — креатинкиназы, лактатдегидрогеназы, характерные для какой-то отдельной ткани. Так, после длительных физических нагрузок в крови спортсменов появляется изоформа креатинфосфокиназы, характерная для скелетных мышц; при остром инфар­кте миокарда в крови появляется изоформа креатинкиназы, характерная для сердечной мышцы. Если физическая нагрузка вызывает значитель­ный выход ферментов в кровь из тканей и они долго сохраняются в ней в период отдыха, то это свидетельствует о невысоком уровне трениро­ванности спортсмена, а, возможно, и о предпатологическом состоянии организма.

Гормоны, При биохимической диагностике функционального состоя­ния спортсмена информативными показателями является уровень гормо­нов в крови. Могут определяться более 20 различных гормонов, регулиру­ющих разные звенья обмена веществ. Концентрация гормонов в крови до­вольно низкая и обычно варьируется в пределах от 10~8 до 10~11 моль • л~1, что затрудняет широкое использование этих показателей в спортивной ди­агностике. Основные гормоны, которые используются при оценке функци­онального состояния спортсмена, а также их концентрация в крови в нор­ме и направленность изменения при стандартной физической нагрузке представлены в табл. 4.

Величина изменения содержания гормонов в крови зависит от мощ­ности и длительности выполняемых нагрузок, а также от степени трениро­ванности спортсмена. При работе одинаковой мощности у более трениро­ванных спортсменов наблюдаются менее значительные изменения этих показателей в крови. Кроме того, по изменению содержания гормонов в крови можно судить об адаптации организма к физическим нагрузкам, интенсивности регулируемых ими метаболических процессов, развитии процессов утомления, применении анаболических стероидов и других гормонов.

Витамины. Выявление витаминов в моче входит в диагностический комплекс характеристики состояния здоровья спортсменов, их физичес­кой работоспособности. В практике спорта чаще всего выявляют обеспе­ченность организма водорастворимыми витаминами, особенно витами­ном С. В моче витамины появляются при достаточном обеспечении ими организма. Данные многочисленных исследований свидетельствуют о не­достаточной обеспеченности многих спортсменов витаминами, поэтому контроль их содержания в организме позволит своевременно скорректи­ровать рацион питания или назначить дополнительную витаминизацию путем приема специальных поливитаминных комплексов.

Минеральные вещества В мышцах образуется неорганический фосфат в виде фосфорной кислоты (Н3Р04) при реакциях перефосфорилирования в креатинфосфокиназном механизме синтеза АТФ и других процессах. По изменению его концентра­ции в крови можно судить о мощности креатинфосфокиназного механиз­ма энергообеспечения у спортсменов, а также об уровне тренированнос­ти, так как прирост неорганического фосфата в крови спортсменов высо­кой квалификации при выполнении анаэробной физической работы боль­ше, чем в крови менее квалифицированных спортсменов.

Таблица 4. Направленность изменений концентрации гормонов в крови при физических нагрузках.



Направленность

Гормон

Концентрация в крови, нг • л'1

изменения концентрации при физических



нагрузках

Адреналин

0-0,07

Инсулин

1—1,5

Глюкагон

70-80

Соматотропин

1-6

АКТГ

10—200

Кортизол

50-100

Тестостерон

3—12 (мужчины)


0,1—0,3 (женщины)


Эстрадиол

70-200

Тироксин

50-140






-10-

4. Биохимический контроль развития систем энергообеспе­чения организма при мышечной деятельности

Спортивный результат в определенной степени лимитируется уровнем развития механизмов энергообеспечения организма. Поэтому в практике спорта проводится контроль мощности, емкости и эффективности ана­эробных и аэробных механизмов энергообразования в процессе трени­ровки, что можно осуществлять и по биохимическим показателям.

Для оценки мощности и емкости креатинфосфокиназного механизма энергообразования используются показатели общего алактатного кислородного долга, количество креатинфосфата и активность креатинфосфокиназы в мышцах. В тренированном организме эти показатели значитель­но выше, что свидетельствует о повышении возможностей креатинфосфокиназного (алактатного) механизма энергообразования.

Степень подключения креатинфосфокиназного механизма при выпол­нении физических нагрузок можно оценить также по увеличению в крови содержания продуктов обмена КрФ в мышцах (креатина, креатинина и не­органического фосфата) или изменению их содержания в моче.

Для характеристики гликолитического механизма энергообразования часто используют величину максимального накопления лактата в артери­альной крови при максимальных физических нагрузках, а также величину общего и лактатного кислородного долга, значение рН крови и показате­ли КОС, содержание глюкозы в крови и гликогена в мышцах, активность ферментов лактатдегидрогеназы, фосфорилазы и др.

О повышении возможностей гликолитического (лактатного) энерго­образования у спортсменов свидетельствует более поздний выход на мак­симальное количество лактама в крови при предельных физических на­грузках, а также более высокий его уровень. У высококвали­фицированных спортсменов, специализирующихся в скоростных видах спорта, количество лактата в крови при интенсивных физических нагруз­ках может возрастать до 26 ммоль • л"1 и более, тогда как у нетренирован­ных людей максимально переносимое количество лактата составляет 5— 6 ммоль -л"1, а 10 ммоль • л~1 может привести к летальному исходу при функциональной норме 1—1,5 ммоль-л"1. Увеличение емкости гликолиза сопровождается увеличением запасов гликогена в скелетных мышцах, осо­бенно в быстрых волокнах, а также повышением активности гликолитических ферментов.

Для оценки мощности аэробного механизма энергообразования чаще всего используются уровень максимального потребления кислорода (МПК или ИЭ2тах), время наступления ПАНО, а также показатель кислородтранспортной системы крови — концентрация гемоглобина. Повышение уровня 1/О2тах свидетельствует об увеличении мощности аэробного механизма энергообразования. Максимальное потребление кислорода у взрослых людей, не занимающихся спортом, у мужчин составляет 3,5 л -мин"1, у женщин — 2,0 л • мин"1 и зависит от массы тела. У высококвалифициро­ванных спортсменов абсолютная величина 1/О2тах у мужчин может достигать 6—7 л • мин"1, у женщин — 4—5 л • мин"1.

По длительности работы на уровне ПАНО судят о повышении емкости механизма энергообразования. Нетренированные люди не могут выпол­нять физическую работу на уровне ПАНО более 5—6 мин. У спортсменов, специализирующихся на выносливость, длительность работы на уровне ПАНО может достигать 1—2 ч.

Эффективность аэробного механизма энергообразования зависит от скорости утилизации кислорода митохондриями, что связано прежде все­го с активностью и количеством ферментов окислительного фосфорилирования, количеством митохондрий, а также от доли жиров при энергообра­зовании. Под влиянием интенсивной тренировки аэробной направленнос­ти увеличивается эффективность аэробного механизма за счет увеличения скорости окисления жиров и увеличения их роли в энергообеспечении ра­боты.

5. Биохимический контроль за уровнем тренированности, утомления и восстановления организма спортсмена

•    Уровень тренированности в практике биохимического контроля за функци­ональным состоянием спортсмена оценивается по изменению концентра­ции лактата в крови при выполнении стандартной либо предельной физической нагрузки для данного контингента спортсменов. О более высоком уровне тренированности свидетельствуют меньшее накопление лактата (по сравнению с нетренированными) при выполнении стандартной нагрузки, что связано с увеличением доли аэробных механизмов в энергообеспечении этой работы;

•    большее накопление молочной кислоты при выполнении предельной работы, что связано с увеличением емкости гликолитического механизма энергообеспечения;

•    повышение ПАНО (мощность работы, при которой резко возрастает уровень лактата в крови) у тренированных лиц по сравнению с нетрениро­ванными;

•    более длительная работа на уровне ПАНО;

•    меньшее увеличение содержания лактата в крови при возрастании
мощности работы, что объясняется совершенствованием анаэробных про­цессов и экономичностью

-11-

энерготрат организма;

•    увеличение скорости утилизации лактата в период восстановления после физических нагрузок.

•    С увеличением уровня тренированности спортсменов в видах спорта на выносливость увеличивается общая масса крови: у мужчин — от 5—6 до 7—8 л, у женщин — от 4—4,5 до 5,5—6 л, что приводит к увеличению концен­трации гемоглобина до 160—180 г • л"1 — у мужчин и до 130—150 г • л"1 — у женщин.

Контроль за процессами утомления и восстановления, которые явля­ются неотъемлемыми компонентами спортивной деятельности, необходим для оценки переносимости физической нагрузки и выявления перетрени­рованности, достаточности времени отдыха после физических нагрузок, эффективности средств повышения работоспособности, а также для ре­шения других задач.

Утомление, вызванное физическими нагрузками максимальной и суб­максимальной мощности, взаимосвязано с истощением запасов энергети­ческих субстратов (АТФ, КрФ, гликогена) в тканях, обеспечивающих этот вид работы, и накоплением продуктов их обмена в крови (молочной кис­лоты, креатина, неорганических фосфатов), поэтому и контролируется по этим показателям. При выполнении продолжительной напряженной рабо­ты развитие утомления может выявляться по длительному повышению уровня мочевины в крови после окончания работы, по изменению компо­нентов иммунной системы крови, а также по снижению содержания гормо­нов в крови и моче.

В спортивной диагностике для выявления утомления обычно опреде­ляют содержание гормонов симпато-адреналовой системы (адреналина и продуктов его обмена) в крови и моче. Эти гормоны отвечают за степень напряжения адаптационных изменений в организме. При неадекватных функциональному состоянию организма физических нагрузках наблюдает­ся снижение уровня не только гормонов, но и предшественников их син­теза в моче, что связано с исчерпанием биосинтетических резервов эн­докринных желез и указывает на перенапряжение регуляторных функций организма, контролирующих адаптационные процессы.

Для ранней диагностики перетренированности, скрытой фазы утом­ления используется контроль за функциональной активностью иммунной системы. Для этого определяют количество и функциональную актив­ность клеток Т- и В-лимфоцитов: Т-лимфоциты обеспечивают процессы клеточного иммунитета и регулируют функцию В-лимфоцитов; В-лимфоциты отвечают за процессы гуморального иммунитета, их функциональ­ная активность определяется по количеству иммуноглобулинов в сыво­ротке крови.

Определение компонентов иммунной системы требует специальных условий и аппаратуры. При подключении иммунологического контроля за функциональным состоянием спортсмена необходимо знать его исходный иммунологический статус с последующим контролем в различные перио­ды тренировочного цикла. Такой контроль позволит предотвратить срыв адаптационных механизмов, исчерпание иммунной системы и развитие инфекционных заболеваний спортсменов высокой квалификации в перио­ды тренировки и подготовки к ответственным соревнованиям (особенно при резкой смене климатических зон).

Восстановление организма связано с возобновлением количества израсходованных во время работы энергетических субстратов и других веществ. Их восстановление, а также скорость обменных процессов происходят не одновременно (см. главу 18). Знание времени восстановле­ния в организме различных энергетических субстратов играет большую роль в правильном построении тренировочного процесса. Восстановле­ние организма оценивается по изменению количества тех метаболитов углеводного, липидного и белкового обменов в крови или моче, которые существенно изменяются под влиянием тренировочных нагрузок. Из всех показателей углеводного обмена чаще всего исследуется скорость ути­лизации во время отдыха молочной кислоты, а также липидного обмена — нарастание содержания жирных кислот и кетоновых тел в крови, которые в период отдыха являются главным субстратом аэробного окисления, о чем свидетельствует снижение дыхательного коэффициен­та. Однако наиболее информативным показателем восстановления орга­низма после мышечной работы является продукт белкового обмена — мочевина. При мышечной деятельности усиливается катаболизм ткане­вых белков, способствующий повышению уровня мочевины в крови, поэтому нормализация ее содержания в крови свидетельствует о восста­новлении синтеза белка в мышцах, а следовательно, и восстановлении организма.

6. Контроль за применением допинга в спорте

В начале XX ст. в спорте для повышения физической работоспособнос­ти, ускорения процессов восстановления, улучшения спортивных резуль­татов стали широко применять различные стимулирующие препараты, включающие гормональные, фармакологические и физиологические, — так называемые допинги. Использование их не только создает неравные условия при спортивной борьбе, но и причиняет вред здоровью спорт­смена в результате побочного действия, а иногда являются причиной ле­тального исхода. Регулярное применение допингов, особенно гормо­нальных препаратов, вызывает нарушение функций многих физиологи­ческих систем:

•    сердечно-сосудистой;

•    эндокринной, особенно половых желез (атрофия) и гипофиза, что приводит к нарушению детородной функции, появлению мужских вторич­ных признаков у женщин (вирилизация) и увеличению молочных желез у мужчин (гинекомастия);

•    печени, вызывая желтухи, отеки, циррозы;

•    иммунной, что приводит к частым простудам, вирусным заболеваниям;

•    нервной, проявляющейся в виде психических расстройств (агрессив­ность, депрессия, бессонница);

•    прекращение роста трубчатых костей, что особенно опасно для рас­тущего организма, и др.

Многие нарушения проявляются не сразу после использования допин­гов, а спустя 10—20 лет или в потомстве. Поэтому в 1967 г. МОК создал медицинскую комиссию (МК), которая определяет список запрещенных к использованию в спорте препаратов и ведет антидопинговую работу, ор­ганизовывает и проводит допингконтроль на наличие в организме спорт­смена запрещенных препаратов. Каждый спортсмен, тренер, врач коман­ды должен знать

-12-

запрещенные к использованию препараты.

Классификация допингов

К средствам, которые используются в спорте для повышения спортивного мастерства, относятся: допинги, допинговые методы, психологические ме­тоды, механические факторы, фармакологические средства ограниченно­го использования, а также пищевые добавки и вещества.

К средствам, которые причиняют особый вред здоровью и подверга­ются контролю, относятся допинги и допинговые методы (манипуляции).

По фармакологическому действию допинги делятся на пять классов: 1 — психостимуляторы (амфетамин, эфедрин, фенамин, кофеин, кокаин и др.); 2 — наркотические средства (морфин, алкалоиды-опиаты, промедол, фентанил и др.); 3 — анаболические стероиды (тестостерон и его произ­водные, метан-дростенолон, ретаболил, андродиол и многие другие), а также анаболические пептидные гормоны (соматотропин, гонадо-тропин, эритропоэтин); 4 — бета-блокаторы (анапримин (пропранолол), окспренолол, надолол, атенолол и др.); 5 — диуретики (новурит, дихлоти-азид, фуросемид (лазикс), клопамид, диакарб, верошпирон и др.).

Допинги являются биологически активными веществами, выделен­ными из тканей животных или растений, получены синтетически, как и их аналоги. Многие допинги входят в состав лекарств от простуды, гриппа и других заболеваний, поэтому прием спортсменом лекарств должен согла­совываться со спортивным врачом во избежание неприятностей при допингконтроле.

К допинговым методам относятся кровяной допинг, различные мани­пуляции (например, подавление процесса овуляции у женщин и др.).

Биологическое действие в организме отдельных классов допингов разнообразно. Так, психостимуляторы повышают спортивную деятель­ность путем активации деятельности ЦНС, сердечно-сосудистой и дыха­тельной систем, что улучшает энергетику и сократительную активность скелетных мышц, а также снимают усталость, придают уверенность в сво­их силах, однако могут привести к предельному напряжению функций этих систем и исчерпанию энергетических ресурсов. Наркотические вещества подавляют болевую чувствительность, так как являются сильными анальге­тиками, и отдаляют чувство утомления. Анаболические стероиды усили­вают процессы синтеза белка и уменьшают их распад, поэтому стимули­руют рост мышц, количества эритроцитов, способствуя ускорению адап­тации организма к мышечной деятельности и процессов восстановления, улучшению композиционного состава тела. Бета-блокаторы противодей­ствуют эффектам адреналина и норадреналина, что как бы успокаивает спортсмена, повышает адаптацию к физическим нагрузкам на выносли­вость. Диуретики, или мочегонные средства усиливают выведение из ор­ганизма солей, воды и некоторых химических веществ, что способствует снижению массы тела, выведению запрещенных препаратов.

Следует отметить, что среди рассмотренных классов допинга наибо­лее часто применяются анаболические стероиды. В тяжелой атлетике, па-уэрлифтинге, бодибилдинге их применяют около 90 % мужчин и 20 % женщин. В других видах спорта они используются в меньшей степени (78 % — футболисты, 40 % — спринтеры). При этом используемые дозы могут многократно превышать рекомендуемые (5—10 мг) и достигать 300 мг и даже 2 г.

Задачи, объекты и метолы лопингконтроля

Задачей допингконтроля является выявление возможного использования допинговых веществ и допинговых методов спортсменами на соревно­ваниях и в процессе тренировки, применение к виновным специальных санкций.

Допингконтроль проводится во время Олимпийских игр, чемпионатов мира и Европы, а в последнее время — и на менее крупных соревновани­ях либо даже в период тренировки (по решению международных спортив­ных организаций). Назначается допинговый контроль медицинской комис­сией МОК или НОК, а проводится аккредитованными МОК специальными лабораториями, обычно той страны, в которой проводятся соревнования. Допинглаборатории существуют при биохимических или других институ­тах, оснащенных современной аппаратурой.

В последнее время в качестве основного объекта контроля использу­ется проба мочи, поскольку это неинвазивный объект и собрать можно не­ограниченный объем. Образец мочи должен составлять не менее 100 мл с рН 6,5. Забор мочи производят в присутствии эксперта МК МОК. Собран­ная проба делится на две части и на холоду доставляется в центр допин­гового контроля.

С целью обнаружения применения кровяного допинга используют об­разцы венозной крови.

Для выявления допинговых веществ в моче или крови спортсмена при­меняются высокочувствительные методы биохимического анализа, так как концентрация этих веществ незначительна. К таким методам относятся: газовая хроматография, масс-спектрометрия, жидкостная хроматография, флюоресцентный иммунный анализ. При этом следует использовать не менее двух методов.

Хотя методы допингконтроля высокочувствительны, в настоящее вре­мя затруднения вызывает выявление анаболических пептидных гормонов (соматотропина, эритропоэтина и др.), а также применение кровяного до­пинга.




Литература:

1. Биохимия: Учебник для институтов физической культуры/ Под ред. В.В. Меньшикова, Н.И. Волкова.- М.: Физкультура и спорт, 1986. – 384 с.

2. Рогозкин В.А. Биохимическая диагностика в спорте. – Л.: Наука, 1988. – 50 с.

3. Хмелевский Ю.В., Усатенко О.К. Основные биохимические константы в норме и при патологии. – Киев: Здоров’я, 1984. – 120 с.

4. Физиологическое тестирование спортсменов высокого класса/ Под ред. Дж. Дункана МакДауэла, Говарда Э. Уэнгера, Говарда Дж. Грина. – Киев:Олимпийская литература,1998. – 430 с.

5. Н.И. Волков, Э.Н. Несен, А.А. Осипенко, С.Н. Корсун, Олимпийская литература, 2000. – 502 с.



Страницы: 1, 2, 3