рефераты

рефераты

 
 
рефераты рефераты

Меню

Расчет защитного заземления и зануления рефераты

1) проложенные в земле водопроводные и другие металлические трубопроводы, за исключением трубопроводов горючих жидкостей, горючих или взрывчатых газов и смесей;

2) обсадные трубы скважин;

3) металлические и железобетонные конструкции зданий и сооружений, находящиеся в соприкосновении с землей;

4) металлические шунты гидротехнических сооружений, водоводы, затворы и т.п.;

5) свинцовые оболочки кабелей, проложенных в земле. Алюминиевые оболочки кабелей не допускается использовать в качестве естественных заземлителей.

Если оболочки кабелей служат единственными заземлителями, то в расчете заземляющих устройств они должны учитываться при количестве кабелей не менее двух;

6) заземлители опор ВЛ, соединенные с заземляющим устройством электроустановки при помощи грозозащитного троса ВЛ, если трос не изолирован от опор ВЛ;

7) нулевые провода ВЛ до 1 кВ с повторными заземлителями при количестве ВЛ не менее двух;

8) рельсовые пути магистральных неэлектрифицированных железных дорог и подъездные пути при наличии преднамеренного устройства перемычек между рельсами.

Заземлители должны быть связаны с магистралями заземлений не менее чем двумя проводниками, присоединенными к заземлителю в разных местах. Это требование не распространяется на опоры ВЛ., повторное заземление нулевого провода и металлические оболочки кабелей.

В качестве естественных заземлителей недопустимо использование теплотрасс, трубопроводов с горючими веществами такими как бензин, природным газом, нефтью и др.

Использование естественных заземлителей уменьшает капиталовложения в установки, упрощает монтаж оборудования и тд.

Если по определенным причинам, такими как: невозможность использования естественных заземлителей, для повышения надёжности заземления, используют искусственные заземлители.

– стальные трубы от 2 м с толщиной стенки от 3.5 мм

– полосовую или угловую сталь толщиной не менее 4 мм

– прутковую сталь диаметром 10 мм длиной 10 метров и более

Устройство защитного заземления

Применение защитного заземления чаще всего требуется на РУ подстанций. Для этого по контуру подстанции вбиваются в землю вертикальные электроды. В их качестве выступают чаще всего стальные стержни. Затем они опоясываются горизонтальным заземлителем, в качестве которого служит стальная полоса. Способ соединения их сварка. Места соединения рекомендуется проливать битумом для уменьшения коррозии. При необходимости число вертикальных электродов, равно как и горизонтальных увеличивают. Это определяется в результате расчета (см. п 5.1), который сводится к определению сопротивления растеканию тока заземлителя. Оно зависит от проводимости грунта, конструкции заземлителя и глубины его заложения. Проводимость грунта характеризуется его удельным сопротивлением – сопротивлением между противоположными сторонами кубика грунта со стороной 1 см. Оно зависит от характера и строения грунта, его влажности, глубины промерзания. Так при промерзании грунта его удельное сопротивление возрастает.

При устройстве заземления на подстанции также необходимо обратить внимание и на устройство входа и въезда в подстанцию. Здесь нужно закладывать две-три стальные полосы в форме козырька с постепенным заглублением на 1,5–2 м, чем достигается снижение напряжения шага. В местах перекрещивания заземляющих проводников с кабелями, трубопроводами, железнодорожными путями, в местах их ввода в здания и в других местах, где возможны механические повреждения заземляющих защитных проводников, эти проводники должны быть защищены. [1, с. 102]

Устройство зануления.

Применение данной защиты требуется чаще всего помещениях с большим количеством электроприемников, так как заземление на месте каждого из них бывает невозможным в силу объективных причин. Для этого, например в цехе [3, с. 155], прокладываются магистральные защитные проводники из полосовой стали, сечение которой указано ранее. В наружных установках заземляющие и нулевые защитные проводники допускается прокладывать в земле, в полу или по краю площадок, фундаментов технологических установок и т.п. Затем зануляемые части приемников подключаются к магистрали. Ответвления от магистралей к электроприемникам до 1 кВ допускается прокладывать скрыто непосредственно в стене, под чистым полом и т.п. с защитой их от воздействия агрессивных сред. Такие ответвления не должны иметь соединений. Способ прокладки их зависит от помещения в котором они выполняются.

В помещениях сухих, без агрессивной среды, заземляющие и нулевые защитные проводники допускается прокладывать непосредственно по стенам.

Во влажных, сырых и особо сырых помещениях и в помещениях с агрессивной средой заземляющие и нулевые защитные проводники следует прокладывать на расстоянии от стен не менее чем 10 мм.

Сама магистраль выводится к месту устройства заземления.

Не допускается использовать в качестве нулевых защитных проводников нулевые рабочие проводники, идущие к переносным электроприемникам однофазного и постоянного тока. Для зануления таких электроприемников должен быть применен отдельный третий проводник, присоединяемый во втычном соединителе ответвительной коробки, в щите, щитке, сборке и т.п. к нулевому рабочему или нулевому защитному проводнику.

Также можно привести и дополнительные требования к устройству цепи заземляющих и нулевых защитных проводников:

– в их не должно быть разъединяющих приспособлений и предохранителей.

– нулевые защитные проводники линий не допускается использовать для зануления электрооборудования, питающегося по другим линиям.

– допускается использовать нулевые рабочие проводники осветительных линий для зануления электрооборудования, питающегося по другим линиям, если все указанные линии питаются от одного трансформатора, и исключена возможность отсоединения нулевых рабочих проводников во время работы других линий. В таких случаях не должны применяться выключатели, отключающие нулевые рабочие проводники вместе с фазными.

– заземляющие и нулевые защитные проводники должны быть предохранены от химических воздействий.

– использование специально проложенных заземляющих или нулевых защитных проводников для иных целей не допускается.


4. Расчет защитного заземления и зануления


Расчет защитного заземления

Рассчитать заземляющее устройство трансформаторной подстанции напряжением 10/0,4 кВ. Подстанция понижающая, имеет два трансформатора с изолированными нейтралями на стороне 10кВ и с глухозаземленными нейтралями на стороне 0,4 кВ; размещена в отдельном кирпичном здании. Предполагаемый контур искусственного заземлителя вокруг здания имеет форму прямоугольника длиной 15 м и шириной 10 м.


Таблица 3. Исходные данные к расчету

№ вар.

U, кВ

Контур заземлителя

Re, Ом

, км

, км

, м

d, мм

Lг, м

Сечение полосы (размеры), мм

to, м

, Ом∙м

, Ом∙м

длина, м

ширина, м

19

10

15

15

34

165

160

2,5

12

60

40х4

0,5

120

176


В качестве естественного заземлителя будет использована металлическая технологическая конструкция, частично погруженная в землю; ее расчетное сопротивление растеканию, с учетом сезонных изменений, составляет Rв=34 Ом. Ток замыкания на землю неизвестен, однако известна протяженность линий 10 кВ – кабельных км, воздушных км.

Заземлитель предполагается выполнить из вертикальных стержневых электродов длиной м, диаметром d=12 мм, верхние концы которых соединяются с помощью горизонтального электрода – стальной полосы длиной Lг=50 м, сечением 4х40 мм, уложенной в землю на глубине

to = 0,8 м.

Расчетные удельные сопротивления грунта, полученные в результате измерений и расчета равны:

для вертикального электрода длиной 5 м  Ом∙м;

для горизонтального электрода длиной 50 м  Ом∙м.


Рис. 2. Предварительная схема контурных искусственных заземлителей подстанции: (n=10 шт., а=5 м, LГ=50 м)


Проводим расчет заземлителя в однородной земле методом коэффициентов использования по допустимому сопротивлению [2].

Расчетный ток замыкания на землю на стороне с напряжением U=6 кВ, [2, с. 204]:


А


Требуемое сопротивление растеканию заземлители, который принимаем общим для установок 10 и 0,4 кВ, [2, табл. 1]:

Ом

Требуемое сопротивление искусственного заземлители [2, с. 207]:


Ом


Тип заземлителя выбираем контурный, размещенный по периметру прямоугольника длиной 15 м и шириной 10 м вокруг здания подстанции. Вертикальные электроды размещаем на расстоянии а=5 м один от другого.

Из предварительной схемы следует, что в принятом нами заземлителе суммарная длина горизонтального электрода LГ=50 м, а количество вертикальных электродов n=LГ/a = 50/5 = 10 шт., рис. 1а.

Уточняем параметры заземлителя путем проверочного расчета.

Определяем расчетное сопротивление растеканию вертикального электрода

[2. с. 90, табл. 3.1]:


Ом


d =12 мм =0,012 м – диаметр электрода,


м.


Определяем расчетное сопротивление растеканию горизонтального электрода [4, с. 90, табл. 3.1.]:


Ом,


где

В=40 мм=0,04 м – ширина полосы,

t=t0=0,8 м – глубина заложения электрода.

Для принятого нами контурного заземлителя при отношении и n=10 шт. по таблице 4 определяем коэффициенты использования электродов заземлителя:

 – коэффициент использования вертикальных электродов,

 – коэффициент использования горизонтального электрода.

Находим сопротивление растеканию принятого нами группового заземлителя, [2, с. 181]:


Ом


Это сопротивление R=3,9 Ом больше, чем требуемое RИ=0,778 Ом, поэтому принимаем решение увеличить в контуре заземлителя количество вертикальных электродов.

Решение этой задачи представим в виде таблицы



Таблица 4. Расчет защитного заземления

Число вертикальных электродов

Длина горизонтальных электродов

R

10

50

6,7

0,34

0,56

3,896681

28

210

1,98

0,24

0,43

1,773492

54

450

1,018

0,38

0,2

1,298128

88

770

0,634

0,372

0,197

0,816924

97

855

0,578

0,362

0,191

0,748988


Это сопротивление R=0,748 меньше требуемого RИ=0,753 но так как разница между ними невелика и она повышает условия безопасности, принимаем этот результат как окончательный.

Итак, окончательная схема контурного группового заземлителя состоит из 97 вертикальных стержневых электродов длиной 5 м, диаметром 12 мм, с расстоянием между ними равным 5 м и горизонтального электрода в виде сетки длиной 855 м, сечением 4х40 мм, заглубленных в землю на 0,8 м.

Расчет зануления.

Требуется проверить обеспечена ли отключающая способность зануления в сети, при нулевом защитном проводнике – стальной полосе сечением 30x4 мм. Линия 380/220 В с медными проводами 3х6 мм2 питается or трансформатора 100 кВА, 6/0,4 кВ со схемой соединения обмоток «треугольник – звезда с нулевым проводом» (). Двигатели защищены предохранителями I1ном=30 А (двигатель 1) и I2ном=20 А (двигатель 2). Коэффициент кратности тока К=3.

Решение

Решение сводится к проверке условия. (2, с. 233, ф. 6.3):


,


где

 – ток однофазного короткого замыкания, проходящий по петле фаза-нуль;

 – наименьший допустимый ток по условию срабатывания защиты (предохранителя);

- номинальный ток плавкой вставки предохранителя.

Выполнение этого условия обеспечит надежное срабатывание защиты при коротком замыкании (КЗ) фазы на зануленный корпус электродвигателя, т.е. соединенный нулевым защитным проводником с глухозаземленной нейтральной точкой трансформатора.

– Определяем наименьшие допустимые значения токов для двигателей 1 и 2:


А;

А


– Находим полное сопротивление трансформатора

Ом [2, табл. 6.5]

– Определяем на участке м км активное  и индуктивное сопротивления фазного провода; активное  и индуктивное сопротивления нулевого защитного провода и внешнее индуктивное сопротивление петли фаза-нуль:

Согласно паспортным данным кабеля марки АПВ 4х6 [6]:

Rуд = 5,21 ом/км

Xуд, ом/км=0.1 ом/км


Ом,

 Ом


Принимаем =0 Ом

Находим ожидаемую плотность тока в нулевом защитном проводе – стальной полосе сечением


мм2;

А/мм2


По [2, табл. 6.6] для А/мм2 и мм2 находим:

Ом/км – активное сопротивление 1 км стального провода,

Ом/км – внутреннее индуктивное сопротивление 1 км стального провода.

Далее находим  и  для м км:


Ом; Ом


Определяем  для м км:


Ом


 Ом/км – внешнее индуктивное сопротивление 1 км петли фаза-нуль, величина которого принята по рекомендации [2, с. 240].

– Определяем на всей длине линии  активное и индуктивное  сопротивления фазного провода; активное  и индуктивное сопротивления нулевого защитного провода и внешнее индуктивное сопротивление  петли фаза-нуль:


Ом

Ом


Аналогично предыдущему принимаем:

=0 Ом

Ожидаемая плотность тока в нулевом защитном проводе:


А/мм2


По [2, табл. 6.5] для А/мм2 и мм2 находим:

Ом/км

Ом/км

Далее находим  и  для :


Ом;

Ом


Определяем  для :


Ом,


где Ом/км принято по рекомендации [2, с. 240] как и в предыдущем случае.



Рис. 3 Схема сети к расчету зануления


– Находим действительные значения токов однофазного короткого замыкания, проходящих по петле фаза-нуль по формуле [2, с. 235, ф. 6.8]:



для следующих случаев:

а) при замыкании фазы на корпус двигателя 1

А

б) при замыкании фазы на корпус двигателя 2:

А

– Вывод: поскольку действительные значения токов однофазного короткого замыкания А и А превышают соответствующие наименьшие допустимые по условиям срабатывания защиты токи А и А, нулевой защищенный провод выбран правильно, т.е. отключающая способность системы зануления обеспечена.



Литература


1. Бургсдорф В.В., Якобс А.И. Заземляющие устройства электроустановок. М: Энергоатомиздат, 1987.

2. Долин П.А. Основы техники безопасности в электроустановках: Учеб. пособие для вузов 2-ое изд., перераб. и доп. – М.: Энергоатомиздат, 1984. – 448 с.

3. Постников Н.П., Рубашов Г.М. Электроснабжение промышленных предприятий. Учебник для вузов. – Л., Стройиздат, 1980. – 376 с.

4. ПУЭ 2002 г.

5. ПТЭЭ 2002 г.

6. http://www.electroshield.ru

Размещено на


Страницы: 1, 2