рефераты

рефераты

 
 
рефераты рефераты

Меню

Радиационная безопасность при эксплуатации и ремонте оборудования Курской АЭС рефераты

Примерами образования наведенной активности на Курской АЭС могут служить: активация аргона; активация кислорода - азотная радиоактивность; активация продуктов коррозии, содержащихся в теплоносителе и т.д.

Наиболее высокой наведенной радиоактивностью обладают оборудование и детали, находящиеся в работающем реакторе, их активность за счет активации атомов, входящих в состав материала из которого они изготовлены, может превышать допустимые уровни излучения в сотни и тысячи раз.

Осколочная радиоактивность - радиоактивность изотопов, образующихся в тепловыделяющих элементах в процессе деления ядерного горючего (урана-235 или плутония-239) в активной зоне реактора. При делении ядер урана-235 образуется более 200 радиоактивных изотопов, значительная часть которых находится в газообразном состоянии.

Осколочная радиоактивность является наиболее высокой и поэтому все операции с облученным ядерным топливом (ТВЭЛами) выполняются дистанционно. Наибольшую опасность представляют ТВЭЛы с разрушенными оболочками, так как при этом радиоактивные изотопы из ТВЭЛов могут попасть в производственные помещения и вызвать значительные загрязнения воздуха и поверхностей.

3  Альфа-частицы представляют собой ядра атомов гелия. Заряд альфа-частиц положительный и равен двум элементарным зарядам. Масса альфа-частиц равна четырем атомным единицам массы и приблизительно в 7000 раз больше массы электрона. При вылете альфа-частицы вес исходного ядра уменьшается на четыре единицы, а заряд на две единицы. Большая масса альфа-частиц определяет прямолинейную траекторию прохождения через электронные оболочки атомов, и только столкновение с ядром приводит к изменению направления движения альфа-частиц.

Кинетическая энергия альфа-частиц составляет несколько миллионов электрон-вольт (МэВ). Вся эта энергия затрачивается на ионизацию и возбуждение атомов вещества. Плотность ионизации очень высокая.

На всем пути пробега, который в воздухе составляет несколько сантиметров, альфа-частицы образуют до 106 пар ионов. В конце пробега альфа-частицы присоединяют два электрона и превращаются в атомы гелия.

В биологической ткани проникающая способность альфа-частиц незначительная и составляет несколько десятков микрон. Толщина поверхностного рогового слоя кожи практически поглощает все падающие на тело альфа-частицы. Тонкий лист бумаги или удаление от источника на расстоянии 10-15 см служат хорошей защитой от альфа-частиц. Однако, чрезвычайно опасно попадание альфа-активных веществ внутрь организма, так как слизистые оболочки внутренних органов очень тонкие и подвержены более сильному воздействию альфа-частиц, чем кожа.

4  Бета-частицы с отрицательным зарядом называются электронами, а с положительным - позитронами. При испускании электрона в ядре происходит превращение нейтрона в протон n = р + е-, а при испускании позитрона - протона в нейтрон р = n + е+. При этом не происходит изменения массового числа, а изменяется заряд ядра; в первом случае он увеличивается на единицу.

Бета-частицы обладают непрерывным энергетическим спектром. Максимальная энергия бета-частиц достигает несколько МэВ. При прохождении через вещество бета-частицы взаимодействуют с орбитальными электронами атомов и производят ионизацию или возбуждение. При этом происходит значительное рассеяние бета-частиц, так как масса их мала. Траектория бета-частиц представляет собой ломаную линию. Максимальные пробеги бета-частиц с энергией 1 МэВ составляют в воздухе около 4 м, в воде - 4,4 мм, в алюминии - 2 мм.

Для защиты от бета-излучения применяются только легкие материалы (алюминий, органическое стекло и др.), так как в случае применения тяжелых материалов возникает интенсивное тормозное (вторичное) рентгеновское излучение, которое обладает большой проникающей способностью.

5  Гамма-излучение представляет собой электромагнитное (фотонное) излучение, испускаемое при ядерных превращениях или при аннигиляции частиц. Энергия гамма-излучения (гамма-квантов) может достигать 10 МэВ и более. Характеристическое излучение - фотонное излучение с дискретным спектром, испускаемое при изменении энергетического состояния атома. Тормозное излучение - фотонное излучение с непрерывным спектром и испускаемое при изменении кинетической энергии заряженных частиц.

Рентгеновское излучение-совокупность тормозного и характеристического излучений, диапазон энергии фотонов которых составляет 1 кэВ – 1 МэВ.

При прохождении через вещество происходит как поглощение гамма-излучения (в результате фотоэлектрического поглощения (фотоэффект) и образования пар), так и рассеяние (комптоновское рассеяние).

Фотоэффект. Явление фотоэффекта заключается в вырывании электронов с одной из оболочек атома. На это тратится часть энергии гамма-квантов, а остальная часть передается электрону в виде кинетической энергии.

Образование пар. При взаимодействии гамма-квантов с энергией более 1,02 МэВ с полем ядра возможен процесс образования пары частиц: электрон и позитрон.

Комптоновское рассеяние не приводит к полному поглощению гамма-квантов. Гамма-квант в результате упругого взаимодействия с электроном передает часть энергии последнему и изменяет направление своего первоначального движения.

Вид взаимодействия гамма-квантов с веществом определяется их энергией. При малой энергии гамма-квантов основную роль играет фотоэффект. С увеличением энергии гамма-квантов возрастает доля комптоновского рассеяния, а с энергии 1,02 МэВ начинает расти доля процесса образования пар. Как правило, проникающая способность гамма-квантов возрастает с увеличением их энергии и уменьшением плотности вещества.

Для защиты от гамма-излучений наиболее часто применяются следующие материалы: свинец, свинцовое стекло, бетон, сталь, железо, вода и т.д.

Для быстрого расчета защиты от гамма-излучения можно использовать приближенное значение слоя половинного ослабления.

Так, например, для энергии гамма-квантов в 1 МэВ значения слоя половинного ослабления будут равны: свинец - 1,3 см; железо - 3,3 см; бетон - 12,9 см; вода - 28 см. При известной кратности ослабления (К) можно определить число слоев половинного ослабления (n) и, следовательно, толщину защиты по формуле: К=2n.

6  Нейтронное излучение возникает в результате ядерных реакций. Основными источниками нейтронов являются ядерные реакторы, где высокие потоки 1013-1016 нейтрон/(см2*с). Кроме этого, нейтроны получают при ядерных реакциях (типа альфа-частица, нейтрон) и (гамма-квант, нейтрон) в источниках, которые часто применяются для градуировки приборов. Распределение нейтронов на группы в зависимости от энергии приведено в таблице А.1.


Таблица А.1 - Распределение нейтронов по энергии

Группа нейтронов

Энергия нейтронов

тепловые

ниже кадмиевой границы (0,4 эВ)

промежуточные

выше кадмиевой границы и ниже 500 кэВ

Быстрые

выше 500 кэВ


В результате деления ядерного топлива образуются быстрые нейтроны, которые при взаимодействии с ядрами теряют энергию и превращаются сначала в промежуточные, затем в медленные и тепловые. При взаимодействии нейтронов с ядрами происходят приведенные ниже реакции.

6.1 Упругое рассеяние. Этот процесс аналогичен упругому столкновению двух шаров. Между нейтронами и ядрами происходит перераспределение кинетической энергии без изменения внутреннего состояния ядер.

6.2 Неупругое рассеяние. При этом процессе быстрые нейтроны передают часть своей кинетической энергии ядрам, которые переходят в возбужденное состояние. Переход ядер в основное состояние сопровождается испусканием вторичных гамма-квантов.

6.3 Радиационный захват. Ядро захватывает нейтрон и образуется новый изотоп, энергия возбуждения последнего высвечивается в виде гамма-квантов, которые покидают ядро практически одновременно с захватом нейтронов.

6.4 Активация. Ядро захватывает нейтрон и испускает другие частицы: протоны, альфа-частицы и др., которые могут покидать ядро по прошествии некоторого времени. Новый изотоп, образующийся в результате этих ядерных реакций, обладает радиоактивностью.

6.5 Деление. При поглощении ядрами тяжелых элементов (урана, плутония) нейтронов происходит процесс деления с образованием двух новых изотопов (осколков) и высвобождением в среднем около 2,5 новых нейтронов.

Вероятность того или иного указанного выше процесса взаимодействия определяется энергией нейтронов, атомным весом элементов и их ядерно-физическими свойствами (сечениями).

Быстрые нейтроны в основном испытывают упругие и неупругие рассеяния, а тепловые и медленные нейтроны, в основном, захватываются ядрами и атомами. Поэтому защита от нейтронов сооружается с целью замедления быстрых нейтронов до тепловых, а затем поглощения тепловых нейтронов ядрами.

Для защиты от нейтронов применяются комбинации материалов, обладающих высокой замедляющей способностью (вода, парафин, полиэтилен, графит, бетон) и высокой поглощающей способностью (бор, кадмий, железо и т.д.).

7  Радиоактивные изотопы характеризуются видом излучения, его энергией и периодом полураспада. Радиоактивные источники характеризуются изотопным составом и активностью.

В качестве единицы энергии (Е) различных радиоактивных излучений (альфа-частиц, бета-частиц, нейтронов и гамма-квантов) применяется электрон-вольт (эВ).

Электрон-вольт - это энергия, приобретенная электроном, пробегающим ускоряющую разность потенциалов равную 1 вольту:

1 эВ = 1,601*10-12 эрг    (1)


Производные единицы:

- килоэлектрон-вольт 1 кэВ = 103 эВ,

- мегаэлектрон-вольт 1 МэВ = 106 эВ.

Характеристикой устойчивости ядер радиоактивных изотопов служит период полураспада (Т1/2). Период полураспада - это время, в течение которого распадается половина имеющихся первоначально ядер радиоактивного изотопа.

Периоды полураспада различных радиоактивных изотопов имеют значения от миллионных долей секунд до нескольких миллиардов лет.

Радиоизотопы, имеющие период полураспада менее суток, принято называть короткоживущими, более суток - долгоживущими.

Активность (А) – мера радиоактивности какого-либо количества радионуклида, находящегося в данном энергетическом состоянии в данный момент времени:


А=dN/dt,                                          (2)


где    dN – ожидаемое число спонтанных ядерных превращений из данного энергетического состояния, происходящих за промежуток времени dt.

Единицей активности является беккерель (Бк). 1Бк соответствует одному спонтанному преобразованию ядра в источнике в секунду. Если активность равномерно распределена по массе или объёму вещества, то его радиоактивность характеризуют удельной (Аv) или объёмной (Am) активностями соответственно. Использовавшаяся ранее внесистемная единица активности кюри (Ки) составляет 3,7×1010 Бк.

Для количественной характеристики гамма-активности источника применяется гамма-эквивалент радия. Гамма-эквивалент источника - условная масса точечного источника радия-226, создающего на данном расстоянии такую же мощность экспозиционной дозы, как данный источник.

Специальной единицей гамма-эквивалента является килограмм-эквивалент радия: 1 кг-экв.радия на расстоянии 1 см в воздухе от источника создает мощность экспозиционной дозы 8,4*106 Р/ч, соответственно 1 мг-экв. радия - 8,4 Р/ч.

Миллиграмм-эквивалент изотопа (мг-экв.радия) связан с его активностью А (мКи) через гамма-постоянную Кгамма.

 

М = А * Кгамма/8,4                                       (3)


Кгамма равна мощности экспозиционной дозы (Р/ч) от точечного источника активностью 1 мКи на расстоянии 1 см.

Кгамма определяется схемой распада и энергией испускаемого гамма-излучения данного нуклида.

Кроме единиц активности радиоактивные излучения характеризуются плотностью потока, т.е. числом частиц (фотонов), проникающих в единицу времени в объем элементарной сферы с единичной площадью сечения.

Размерность: альфа-частиц/(см2*с), бета-частиц/(см2*с), фотон/(см2*с), нейтрон/(см2*с).

8  Количественная оценка действия, производимого ионизирующими излучениями в веществе, производится посредством величины поглощенной дозы.

Поглощенная доза D – величина энергии ионизирующего излучения, переданная веществу:


D = dē/dm,                                       (4)

где    dē - средняя энергия, переданная ионизирующим излучением веществу, находящемуся в элементарном объёме, а         dm - масса вещества в этом объёме.

В единицах СИ поглощенная доза измеряется в джоулях, деленных на килограмм (Дж/кг), и имеет специальное название – грей (Гр).

9  Для оценки радиационной опасности хронического облучения излучением произвольного состава введена величина – доза эквивалентная (НT,R) – поглощенная дозы в органе или ткани, умноженная на соответствующий взвешивающий коэффициент (WR) для данного вида излучения:


НT,R = WRDT,R ,                                          (5)


где    DT,R – средняя поглощенная доза в органе или ткани T, а WR – взвешивающий коэффициент для излучения R.

При воздействии различных видов излучения с различными взвешивающими коэффициентами эквивалентная доза определяется как сумма эквивалентных доз для этих видов излучений:


НT = WR1DT,R1 + WR2DT,R2 + WR3DT,R3 + ..,                    (6)


где    индексы 1, 2, 3 относятся к компонентам излучения.

Единицей эквивалентной дозы является зиверт (Зв).

Взвешивающие коэффициенты для отдельных видов излучения при расчете эквивалентной дозы (WR) - используемые в радиационной защите множители поглощенной дозы, учитывающие относительную эффективность различных видов излучения в индуцировании биологических эффектов:

фотоны любых энергий ………………………………………..     1

электроны и мюоны любых энергий ………………………….     1

нейтроны с энергией менее 10 кэВ …………………………...      5

от 10 кэВ до 100 кэВ ..……………………………………..   10

от 100 кэВ до 2 МэВ ……………………………………….  20

от 2 МэВ до 20 МэВ ……………………………………….   10

более 20 МэВ ……………………………………………....   5

протоны с энергией более 2 МэВ, кроме протонов отдачи …     5

альфа-частицы, осколки деления, тяжелые ядра …………….     20

10 Доза эффективная (E)- величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов и тканей с учетом их радиочувствительности. Она представляет сумму произведений эквивалентной дозы в органах и тканях на соответствующие взвешивающие коэффициенты:


E = SWT ´ НТ,                                           (7)

T


где    НТ - эквивалентная доза в органе или ткани Т, a WT - взвешивающий коэффициент для органа или ткани Т.

Единица эффективной дозы - зиверт (Зв).

Взвешивающие коэффициенты для тканей и органов при расчете эффективной дозы (WT) - множители эквивалентной дозы в органах и тканях, используемые в радиационной защите для учета различной чувствительности разных органов и тканей в возникновении стохастических эффектов радиации:

гонады ........................................................................................   0,20

костный мозг (красный) ...........................................................    0,12

толстый кишечник ....................................................................    0,12

легкие .........................................................................................   0,12

желудок ......................................................................................   0,12

мочевой пузырь .........................................................................   0,05

грудная железа ..........................................................................    0,05

печень ......................................................................................... 0,05

пищевод .....................................................................................   0,05

щитовидная железа ...................................................................    0,05

кожа ............................................................................................ 0,01

клетки костных поверхностей .................................................     0,01

остальное ...................................................................................   0,05*

__________________________

* При расчетах учитывать, что "остальное" включает надпочечники, головной мозг, экстраторокальный отдел органов дыхания, тонкий кишечник, почки, мышечную ткань, поджелудочную железу, селезенку, вилочковую железу и матку. В тех исключительных случаях, когда один из перечисленных органов или тканей получает эквивалентную дозу, превышающую самую большую дозу, полученную любым из двенадцати органов или тканей, для которых определены взвешивающие коэффициенты, следует приписать этому органу или ткани взвешивающий коэффициент, равный 0,025, а оставшимся органам или тканям из рубрики "остальное" приписать суммарный коэффициент, равный 0,025.

Приложение Б. Биологическое действие ионизирующих излучений


1  Ионизирующие излучения в отличие от ряда других опасных и вредных производственных факторов (электрический ток, шум, вибрация и др.), активно не воспринимаются органами чувств человека. Однако, длительное облучение организма в дозах, превышающих основные дозовые пределы, а также разовые аварийные облучения большими дозами могут привести к нарушению жизнедеятельности отдельных органов и всего организма. Эта особенность ионизирующих излучений обуславливает необходимость строгого научно обоснованного контроля радиационной обстановки.

Первичный процесс воздействия излучений на живые клетки, приводящий к радиационному поражению, состоит в передаче энергии в результате процессов ионизации, возбуждения атомов ткани и упругих соударений. Ионизация происходит либо непосредственно при воздействии ионизирующих частиц (альфа, бета), либо в результате вторичных процессов при воздействии фотонов и нейтронов на ядра атомов вещества биологической ткани.

Однако, прямая ионизация полностью не объясняет повреждающего действия излучений. Биологический эффект пропорционален поглощенной энергии излучений, которая затрачивается на разрыв химических связей с образованием свободных радикалов, высокоактивных в химическом отношении. Поскольку живая ткань состоит на 75% из воды, решающее значение имеет косвенное воздействие ионизированных молекул воды и химизм последующих реакций со свободными радикалами. Обладающие исключительной химической активностью, свободные радикалы ОН и Н либо непосредственно, либо через цепь вторичных превращений HO2, H2O2 и других активных окислителей взаимодействует с молекулами органического вещества, в первую очередь белка и приводят к разрушению клеток и нарушению нормальных биохимических процессов живой ткани. Под воздействием радиации происходит также поражение основных жизненных элементов клеток - клеточных ядер. Серьезные поражения клеточных структур приводит к нарушению деятельности организма в целом, его нервной системы (органов кроветворения), к нарушению регуляции деятельности тканей и органов. В результате этого могут нарушиться или прекратиться процессы физиологического функционирования организма.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10