рефераты

рефераты

 
 
рефераты рефераты

Меню

Экологическое состояние морей России рефераты

В июле 1993г. во время 24-го рейса НИС «Академик Александр Несмеянов» были выполнены анализы пяти проб донных осадков западной части Берингова моря. Были получены следующие результаты: Zn — 43,4-67,3, Сu — 16,8-30,4, Со - 5,9-12,5, Ni - 12,0-44,1, Рb - 5,4-9,1, Сd - 0,39-1,05, Сr -9,1-32,7 мкг/г.

Таким образом, имеющаяся информация по тяжелым металлам указывает на то, что прибрежные и открытые районы Берингова моря остаются незагрязненными тяжелыми металлами.

 

Загрязнение нефтяными углеводородами и пестицидам морей Арктики

Существенный вклад в загрязнение морей нефтью вносят аварийные разливы топлива, периодически имеющие место в различных регионах. Тяжелая экономическая ситуация в стране последних 10 лет сказалась на состоянии флота, работе портовых и судоремонтных служб, увеличивая риск возникновения аварийных ситуаций.

Как известно, в морской воде нефть существует в виде поверхностных пленок, истинных и коллоидных растворов, эмульсий, нефтяных агрегатов. Предельно допустимая концентрация (ПДК) НУ в морской воде составляет 0,05 мг/л.

Зоны стабильного накопления углеводородов (УВ), как правило, приурочены к главным геохимическим барьерам — границам раздела, в том числе к границе «река - море».

Отрицательные биологические эффекты нефтяного и прочего загрязнения в фотическом слое наиболее ощутимы в полярных экосистемах из-за того, что низкие температуры воды и воздуха тормозят естественные процессы химического, биохимического и микробиологического окисления УВ даже в летний период.

Полиароматические углеводороды (ПАУ) входят в состав нефти и поступают в морскую среду вместе с НП, поэтому распределение этого вида загрязняющих веществ повторяет закономерности распределения НУ.

Основная масса хлорорганических пестицидов (ХОП) и полихлорбифенилов (ПХБ) привносится в морскую среду речным и материковым стоком, морскими течениями из других акваторий (например, Гольфстримом — в Баренцево море), а также из атмосферы. ПДК большинства ХОП, в том числе ДДТ и его метаболитов ДДД и ДДЭ, ГХЦГ (гексахлорциклогексан) составляют 0,01 мкг/л.

До начала реализации крупномасштабных проектов разведки углеводородного сырья на шельфе Баренцева и Карского морей прямое поступление сырой нефти на морские акватории имело крайне ограниченный характер. Оно не может рассматриваться как фактор, существенно осложняющий экологическую обстановку в регионе, так как действующие районы нефтедобычи и трассы магистральных нефтепроводов находятся значительно южнее. Исключение составляют верхнее течение р. Печора и район п-ова Тазовский (южная часть Тазовской губы), где ведется активная разработка нефтяных месторождений.

В настоящее время уровни загрязнения Российской Арктики НУ определяются поступлением в результате атмосферного переноса от источников, расположенных вне Арктики; выносом на акваторию морей речных вод, загрязненных промышленными и бытовыми стоками, и интенсивностью поступления в окружающую среду топлива, смазочных масел, продуктов их сгорания от локальных источников, расположенных в различных районах побережья.

Поступление НУ в результате несанкционированного сброса льяльных вод и аварийных разливов топлива в результате эксплуатации морских и речных судов по трассе Северного морского пути относительно невелико (в различные годы от этих источников поступало от 50 до 200 т нефтепродуктов за весь навигационный период) и не сопоставимо с масштабами воздействия речного стока и выпадениями из атмосферы.

Огромный объем речного стока в моря Российской Арктики, составляющий около 2500 км3, и его загрязненность позволяют рассматривать речной сток как основной источник поступления НУ на акваторию Арктических морей. При этом необходимо учитывать, что со стоком в моря попадает и большая часть НУ, поступающих в Арктику в результате атмосферного переноса и аккумулированных снежным покровом на водосборных бассейнах арктических рек в длительный холодный период года (с сентября-октября по май-июнь).

Оценки, выполненные Росгидрометом и ММБИ КНЦ РАН, показывают, что общий сток органических соединений в Арктические моря России составляет 28 564 000 т, при этом сток НУ составляет 779 000 т[17].

Максимальный годовой сброс НП со сточными водами характерен для р. Обь и составляет 2880 т. Годовой сброс НП со сточными водами в р. Енисей составляет 2050 т. Объем поступления НУ со сточными водами других рек значительно ниже.

При поступлении НУ от локальных источников, расположенных на побережье, основной объем приходится на хозяйственные и бытовые стоки арктических населенных пунктов и горнодобывающих предприятий. Содержание НП в таких водах незначительно и не может рассматриваться в качестве серьезного источника загрязнения этой группой 3В. Исключение составляет Кольский полуостров, где, например, промышленными предприятиями г. Мурманска сбрасываются без очистки в Кольский залив 65,2 млн. м3 сточных вод, содержащих 56,4 т НП.

Поступление НП в результате инцидентов, связанных с аварийным и несанкционированным сбросом моторных масел и котельного топлива, льяльных и балластных вод приходится в основном на период летне-осенней навигации. Количество нефтепродуктов, поступающих при этом в водные объекты, составляет от 40 до 65 т для конкретных навигаций. Учитывая, что официально фиксировалось 20—30% случаев, общий объем поступления НП от этого источника можно оценить в 150-200 т.

Оценка эмиссии НУ, связанных с выбросами в атмосферу от локальных источников на арктическом побережье, в настоящее время затруднена ввиду отсутствия систематизированной информации по данному вопросу.

Дальневосточные моря. Источниками загрязнения Японского, Охотского и Берингова морей являются предприятия целлюлозно-бумажной, электроэнергетической и нефтегазодобывающей промышленности, жилищно-коммунального хозяйства, судостроительные и судоремонтные предприятия, торговый и военно-морской флот. В прибрежные воды морей с территорий Приморского и Хабаровского краев, Сахалинской, Магаданской и Камчатской областей сбрасываются неочищенные или недостаточно очищенные промышленные и бытовые сточные воды. Вследствие этого в заливах, бухтах, местах расположения портов и баз отстоя судов во всех регионах Дальнего Востока традиционно отмечается повышенное содержание нефти и нефтепродуктов, солей тяжелых металлов и ядохимикатов[23].

Наиболее загрязненными районами являются: в Охотском море – залив Терпения, Японском – Татарский пролив вдоль западного побережья о. Сахалин и бухта Золотой Рог.

В залив Терпения сбрасываются сточные воды предприятий теплоэнергетики, угольной, целлюлозно-бумажной промышленности и коммунальных объектов городов Поронайск, Макаров, Долинск, необеспеченных сооружениями для очистки сточных вод. В 1998 г. наблюдалось постепенное снижение общего уровня загрязненности вод залива в результате остановки Долинского ЦБЗ. Загрязненность прибрежных вод нефтепродуктами составляла в среднем 0,5–2,0 ПДК. Особенно сильно сократился уровень загрязнения в зимний период, когда концентрация фенолов уменьшилась в десятки раз, а концентрация СПАВ не достигала даже уровня ПДК.

Источниками загрязнения Татарского пролива являются Охинский, Александровский, Углегорский, Холмский, Томаринский и Невельский районы – главные поставщики загрязняющих веществ в прибрежно-морскую зону.

Охотское море в основном загрязняется промышленными, коммунальными сточными водами и, в незначительной степени, поверхностным стоком с территорий районов нефтедобычи, расположенных в северо-западной части о. Сахалин, а также от предприятий Курильских островов.

В прибрежных водах Сахалинского шельфа Охотского моря в 1998 г. наблюдения за уровнем загрязненности морских вод проводились в прибрежной зоне в районе пос. Стародубское, а также в Пригородном районе (залив Анива, район г. Корсаков).

Cреднее содержание нефтяных углеводородов в прибрежной зоне пос. Стародубское составило 1 ПДК, фенолов – 4 ПДК, СПАВ – 0,5 ПДК. Кислородный режим в период наблюдения был в норме: среднее содержание растворенного кислорода составило 9,06 мг/л, или 90% насыщения.

В Пригородном районе в период наблюдений содержание нефтяных углеводородов изменялось в диапазоне 0,6–0,9 мг/л, составив в среднем 0,8 (1 ПДК), содержание фенолов – в диапазоне 2–5 мкг/л (в среднем 3 ПДК), СПАВ – от 55 до 153 мкг/л (в среднем 86 мкг/л, или 0,9 ПДК). Содержание азота аммонийного в период наблюдений было значительно ниже ПДК. Кислородный режим был в норме: содержание растворенного кислорода колебалось в пределах 7,77–10,30 мг/л, составив в среднем 9,06 мг/л.

Ртуть в морских водах не обнаружена.

В 1998г. наблюдения за состоянием загрязнения морских вод на шельфе полуострова Камчатка проведены в Авачинской губе и в районе пос. Октябрьский (Охотское море).

В период проведения съемки среднее содержание фенолов в водах Авачинской губы не превысило 3 ПДК (максимальное значение – 5 ПДК). Среднее содержание СПАВ в водах Авачинской губы составило 1,3 ПДК, максимальное – 4,2 ПДК. Преобладающими металлами были медь, молибден, ванадий, железо и марганец. Содержание молибдена колебалось в пределах 1,0–4,3 ПДК, составив в среднем 2,3 ПДК. Содержание марганца, железа, ванадия, меди алюминия, олова, никеля, серебра, хрома не превышали ПДК. Кобальт, свинец, висмут, титан и ртуть в 1998 г. в водах Авачинской губы не обнаружены. В период съемки хлорорганические пестициды в водах Авачинской губы не обнаружены. Содержание биогенных элементов было в пределах фоновых значений. Кислородный режим в целом был в норме. Содержание растворенного кислорода в мае изменялось в пределах 6,84–13,04 мг/л (59,3–128,5% насыщения), составив в среднем 10,75 мг/л (99,5% насыщения). ИЗВ составил 1,26, что соответствует 5-му классу («грязная»)[17].

В прибрежной зоне Охотского моря в районе пос. Октябрьский среднее содержание фенолов в морской воде в период наблюдений составило 5 ПДК, максимальное – 10 ПДК. Это самые высокие концентрации за последние 5 лет. Среднее содержание СПАВ превысило 1,6 ПДК, максимальное – 3,4 ПДК. В последние 5 лет прослеживается устойчивая тенденция к повышению уровня загрязненности морских вод СПАВ. В прибрежных водах присутствуют марганец, железо, молибден, ванадий, медь, висмут, олово, никель, алюминий, серебро, хром и титан. В концентрациях, превышающих ПДК, обнаружены железо, молибден и медь, средние концентрации которых составили 2, 1,3, и 2,5 ПДК соответственно при максимальных 6,8, 3,5 и 3,4 ПДК. Хлорорганические пестициды в период наблюдений не обнаружены. Содержание биогенных элементов в морских водах не превышает ПДК. Кислородный режим в целом был удовлетворительным, среднее содержание растворенного кислорода составило 9,71 мг/л (97% насыщения). По ИЗВ воды характеризуются как «грязные» (2,44 – 5-ый класс).

В течение последних 5 лет загрязнение российской акватории Японского моря остается практически неизменным и достаточно высокими. Наиболее загрязненными являются прибрежные воды залива Петра Великого (бухта Золотой Рог, Амурский и Уссурийский заливы и залив Находка).

Уровень загрязненности морских прибрежных вод нефтяными углеводородами в среднем за 1998г. в этих районах колебался в пределах 1–1,8 ПДК; максимальные концентрации зафиксированы в бухте Золотой Рог и Амурском заливе – более 16 и почти 8 ПДК соответственно.

Среднегодовое содержание фенолов в этих районах составило 4–5 ПДК, а их максимальные концентрации в бухте Золотой Рог – 28 ПДК, Уссурийском заливе – 17 ПДК, Амурском заливе и заливе Находка – 13 ПДК.

Содержание СПАВ в морских прибрежных водах в среднем не превысило 1 ПДК; наиболее загрязненным районом является бухта Золотой Рог – максимум содержания СПАВ составил почти 2,5 ПДК.

В 1998г. в водах Амурского и Уссурийского заливов, бухты Золотой Рог и залива Находка обнаружены медь, кобальт, кадмий, никель, свинец, железо, цинк, ртуть. Среднегодовое содержание меди в прибрежных водах колебалось в диапазоне 1–1,3 ПДК (максимум отмечен в Амурском заливе – 4,8 ПДК). Среднегодовое содержание железа и цинка не превысило 1 ПДК, однако в бухте Золотой Рог максимальные концентрации этих металлов в морской воде соответственно составили 3 и 2 ПДК, в Амурском заливе – 4,6 и 3 ПДК. Уровень загрязненности морских прибрежных вод ртутью в среднем также не превысил 1 ПДК, при этом максимальные концентрации были достаточно высокими: в бухте Золотой Рог – почти 6 ПДК, в Амурском заливе – около 4 ПДК. Концентрации кобальта, никеля и свинца в морских водах не превышали 1 ПДК.

Кислородный режим в прибрежных водах залива Петра Великого в течение 1998г. был удовлетворительным: среднее содержание растворенного кислорода в толще вод изменялось в диапазоне 8,47–9,20 мг/л. Как обычно, в летнее время года в бухте Золотой Рог и Амурском заливе наблюдались случаи уменьшения концентраций растворенного кислорода ниже ПДК. В донных отложениях прибрежных районов залива Петра Великого присутствуют все загрязняющие вещества, за которыми проводится контроль. Так, в 1998г. содержание нефтепродуктов достигало 10,70 мг/г сухого остатка, фенолов – 18,54 мкг/г, меди – 325 мкг/г, свинца – 330 мкг/г, кадмия – 12 мкг/г, кобальта – 19 мкг/г, никеля – 40 мкг/г, цинка – 970 мкг/г, ртути – 1,93 мкг/г. Сохраняется чрезвычайно высокое содержание железа в донных отложениях залива – до 68 000 мкг/г (в 1996 г. концентрации железа достигали 44 000 мкг/г, в 1997 г. – 50 000 мкг/л; до 1996г. они были на 2–3 порядка ниже). Содержание хлорорганических пестицидов в донных отложения залива Петра Великого составило: ГХЦГ – 4,8 нг/г сухого остатка, ГХЦГ – 11,5 нг/г; ДДТ – 56,6 нг/г, ДДЭ – 9,9 нг/г, ДДД – 35,9 нг/г.

Указанные районы в течение многих лет являются одними из наиболее загрязненных среди прибрежных акваторий России.

Глава 3. Экологические последствия загрязнения морей России. Охрана морских вод

3.1. Экологические последствия загрязнения морей

Еще несколько десятилетий назад загрязненные воды представляли собой как бы острова в относительно чистой природной среде. Сейчас картина изменилась, образовались сплошные массивы загрязненных территорий.

Нефтяное загрязнение морей, несомненно, есть самое распространенное явление. В основном оно связано с транспортировкой и разработкой месторождений на шельфе. Континентальное нефтяное загрязнение поступает в океан через речной сток.

В море нефтяное загрязнение имеет различные формы. Оно может тонкой пленкой покрывать поверхность воды, а при разливах толщина нефтяного покрытия вначале может составлять несколько сантиметров. С течением времени образуется эмульсия нефти в воде или воды в нефти. Позже возникают комочки тяжелой фракции нефти, нефтяные агрегаты, которые способны долго плавать на поверхности моря. К плавающим комочкам мазута прикрепляются разные мелкие животные, которыми охотно питаются рыбы и усатые киты. Вместе с ними они заглатывают и нефть. Одни рыбы от этого гибнут, другие насквозь пропитываются нефтью и становятся непригодны для употребления в пищу из-за неприятного запаха и вкуса.

Все компоненты нефти токсичны для морских организмов. Нефть влияет на структуру сообщества морских животных. При нефтяном загрязнении изменяется соотношение видов и уменьшается их разнообразие. Так, обильно развиваются микроорганизмы, питающиеся нефтяными углеводородами, а биомасса этих микроорганизмов ядовита для многих морских обитателей. Доказано, что очень опасно длительное хроническое воздействие даже небольших концентраций нефти[14]. При этом постепенно падает первичная биологическая продуктивность моря. У нефти есть еще одно неприятное побочное свойство. Ее углеводороды способны растворять в себе ряд других загрязняющих веществ, таких, как пестициды, тяжелые металлы, которые вместе с нефтью концентрируются в приповерхностном слое и еще более отравляют его. Ароматическая фракция нефти содержит вещества мутагенной и канцерогенной природы, например бензпирен. Сейчас получены многочисленные доказательства наличия мутагенных эффектов загрязненной морской среды. Бензпирен активно циркулирует по морским пищевым цепочкам и попадает в пищу людей.

Наибольшие количества нефти сосредоточены в тонком приповерхностном слое морской воды, играющем особенно важную роль для различных сторон жизни океана. В нем сосредоточено множество организмов, этот слой играет роль «детского сада» для многих популяций. Поверхностные нефтяные пленки нарушают газообмен между атмосферой и океаном. Претерпевают изменения процессы растворения и выделения кислорода, углекислого газа, теплообмена, меняется отражательная способность морской воды.

Хлорированные углеводороды, широко применяемые в качестве средств борьбы с вредителями сельского и лесного хозяйства, с переносчиками инфекционных болезней, уже многие десятилетия вместе со стоком рек и через атмосферу поступают в моря. ДДТ и его производные, полихлорбифенилы и другие устойчивые соединения этого класса сейчас обнаруживаются повсюду в морях, включая Арктику.

Они легко растворимы в жирах и поэтому накапливаются в органах рыб, млекопитающих, морских птиц. Будучи ксенобиотиками, т.е. веществами полностью искусственного происхождения, они не имеют среди микроорганизмов своих «потребителей» и поэтому почти не разлагаются в природных условиях, а только накапливаются в морских водах. Вместе с тем они остротоксичны, влияют на кроветворную систему, подавляют ферментативную активность, сильно влияют на наследственность.

Вместе с речным стоком в океан поступают и тяжелые металлы, многие из которых обладают токсичными свойствами. Общая величина речного стока составляет 46 тыс. км воды в год. Вместе с ним в моря поступает до 2 млн. т свинца, до 20 тыс. т кадмия и до 10 тыс. т ртути. Наиболее высокие уровни загрязнения имеют прибрежные воды и внутренние моря. Немалую роль в загрязнении морей играет и атмосфера. Так, например, до 30% всей ртути и 50% свинца, поступающих в моря ежегодно, переносится через атмосферу.

По своему токсичному действию в морской среде особую опасность представляет ртуть[11]. Под влиянием микробиологических процессов токсичная неорганическая ртуть превращается в гораздо более токсичные органические формы ртути. Накопленные благодаря биоаккумуляции в рыбе или в моллюсках соединения метилированной ртути представляют прямую угрозу жизни и здоровью людей.

Ртуть, кадмий, свинец, медь, цинк, хром, мышьяк и другие тяжелые металлы не только накапливаются в морских организмах, отравляя тем самым морские продукты питания, но и самым пагубным образом влияют на обитателей моря. Коэффициенты накопления токсичных металлов, т.е. концентрация их на единицу веса в морских организмах по отношению к морской воде, меняются в широких пределах - от сотен до сотен тысяч, в зависимости от природы металлов и видов организмов. Эти коэффициенты показывают, как накапливаются вредные вещества в рыбе, моллюсках, ракообразных, планктонных и других организмах.

Страницы: 1, 2, 3, 4, 5, 6, 7