рефераты

рефераты

 
 
рефераты рефераты

Меню

Автоматизированное рабочее место регистрации и документирования комплекса средств автоматизации рефераты

Выберем из таблицы коэффициент использования светового потока по следующим данным:

·        коэффициент отражения побелённого потолка Rп=70%;

·        коэффициент отражения от стен, окрашенных в светлую краску Rст=50%;

=0.7,

где – высота помещения = 3.5 м. Тогда по табл. 7 [16] находим (для люминесцентных ламп i=0.7) h=0.38.

Определяем общий световой поток:

лм

Наиболее приемлемыми для помещения ВЦ являются люминесцентные лампы ЛБ (белого света) или ЛТБ (тёпло-белого света), мощностью 20, 40 или 80 Вт.

Световой поток одной лампы ЛТБ40 составляет F1=3100 лм, следовательно, для получения светового потока Fобщ=31263.2 лм необходимо N ламп, число которых можно определить по формуле

Подставим значения, полученные выше:

ламп.

Таким образом, необходимо установить 10 ламп ЛТБ40.

Электрическая мощность всей осветительной системы вычисляется по формуле:

, Вт,

где P1 – мощность одной лампы = 40 Вт, N – число ламп = 10.

Вт.

Для исключения засветки экранов дисплеев прямыми световыми потоками светиль­ники общего освещения располагают сбоку от рабочего места, параллельно линии зрения оператора и стене с окнами. Такое размещение светильников позволяет производить их последовательное включение в зависимости от величины естественной освещённости и исключает раздражение глаз чередующимися полосами света и тени, возникающее при поперечном расположении светильников [17].

Расчёт местного светового потока не производится, т.к. в данном случае рекомен­дуется система общего освещения во избежание отражённой блёсткости от поверхности стола и экрана монитора.

Коэффициент пульсации освещённости:

,

где Emax, Emin и Eср показатели освещённости для газоразрядных ламп при питании их переменным током – соответстсвенно максимальная, минимальная и средняя.

Возьмём по аналогии [16], табл. 4 люминесцентную лампу ЛХБ приблизительно той же мощности. Включением смежных ламп в разные фазы (группы) трёхфазной элек­три­ческой сети возможно добиться уменьшения коэффициента пульсации КП с 35 до 3 – т.е. почти в 12 раз (рис. 1). На рис. 1 указаны три выключателя (по одному на каждую фазу – группу ламп) – это необходимо для обеспечения возможности независимого управ­ления группами ламп.







Равномерность распределения яркости в поле зрения. Характеризуется отношением (данное отношение считается оптимальным) или . В данном случае , следовательно отношение .

Итак, для обеспечения нормальных условий работы программиста, в соответствии с нормативными требованиями, необходимо использовать данное число светильников указанной мощности для освещения рабочего помещения.


3. Расчёт информационной нагрузки


Расчёт информационной нагрузки оператора необходим для того, чтобы выяснить, будет ли оператор справляться с заданием.

Рассчитаем информационную нагрузку оператора. Воспользуемся табл. 4 [18].

Количество операций, совершаемых оператором за 3 часа (табл.1):

Табл. 1

 
 


Члены алгоритма

Символ

Количество членов

Частота повторения pi

Афферентные:



1

Наблюдение результатов

F

10

1

Всего:


10


Эфферентные:



1

Выбор наилучшего вари­ан­та из нескольких

C

3

0,04

Исправление ошибок

D

1

0,01

Анализ полученных резу­ль­татов

M

40

0,54

Выполнение механических действий

K

30

0,41

Всего:


74


Итого:


84



Рассчитаем энтропию информации:

Суммарная энтропия:

бит/с.

Поток информационной нагрузки равен , где:

N – суммарное число всех членов алгоритма;

t – длительность выполнения всей работы, мин.

.

Вывод: . Следовательно, информационная нагрузка оператора укладывается в норму [19], табл. 13.2.


Выводы


В данном разделе дипломного проекта был произведён расчёт освещённости рабо­чего места (с выбором типа ламп и их количества), а также оценка информационной наг­рузки.

Расчёты показали, что оператор получает информационную нагрузку, равную .

Кроме того, необходимо в течение 8-ми часового рабочего дня предусмотреть один часовой перерыв на обед, 5-ти минутные перерывы каждые полчаса и 15-ти минутные перерывы каждые 1.5 – 2 часа. Работу необходимо организовать таким образом, чтобы наиболее сложные задачи решались с 11:00 до 16:00 – в период наибольшей активности человека, а не в начале дня, когда оператор ещё не достиг максимальной активности, и не в конце дня, когда уже развивается утомление.

Так как работа оператора не связана с решением крупных логических задач и достаточно однообразна, то рекомендуется по-возможности чередовать виды деятель­ности. Пример чередования видов работ и её интенсивности приведён в графике труда и отдыха (табл.2).


Табл. 2

 
 


Время

Вид работы и её интенсивность

9:00

Начало работы

9:00 – 9:30

Вход в систему, решение общих организационных задач

9:30 – 9:35

5-ти минутный перерыв

9:35 – 10:10

Решение несложных задач, формирование запросов к системе

10:10 – 10:15

5-ти минутный перерыв

10:15 – 10:45

Решение несложных задач, изучение литературы

10:45 – 11:00

15-ти минутный перерыв

11:00 – 11:55

Решение логических, наиболее трудоёмких задач

11:55 – 12:00

5-ти минутный перерыв

12:00 – 13:00

Решение наиболее сложных и трудоёмких задач, требующих максимального умственного напряжения

13:00 – 14:00

Перерыв на обед

14:00 – 14:40

Наблюдение полученных результатов, исправление ошибок

14:40 – 14:45

5-ти минутный перерыв

14:45 – 15:10

Выполнение механических действий, анализ результатов, исправление ошибок

15:10 – 15:30

20-ти минутный перерыв

15:30 – 16:10

Анализ результатов, исправление ошибок

16:10 – 16:15

5-ти минутный перерыв

16:15 – 17:10

Выполнение механических действий, оформление отчётов, подведение результатов

17:10 – 17:15

5-ти минутный перерыв

17:15 – 18:00

Выход из системы, подготовка к следующему рабочему дню (план работ и т.д.)

18:00

Конец работы



Гражданская оборона

Введение

В современных городах из-за высокой плотности застройки административное здание с расположенным в нем вычислительным центром может оказаться вблизи одного из опасных промышленных предприятий, таких как:

·        нефтеперерабатывающий завод;

·        газоперекачивающая станция;

·        ТЭЦ;

·        разного рода химические заводы;

·        предприятия по работе с радиоактивными материалами.

Все эти объекты являются источниками повышенной опасности для близко расположенных построек. Опасными могут быть следующие факторы:

·        утечка СДЯВ;

·        утечка радиоактивных веществ;

·        опасность взрыва и пожара легко воспламеняющихся веществ.

Рассматривается следующая ситуация: поблизости от административного здания расположено хранилище сжиженного газа большой емкости. В результате нарушения целостности контейнера со сжиженным газом и его утечки происходит взрыв. При этом возможны разрушения здания вследствие поражения его ударной волной и развитие пожарной обстановки.

Данная ситуация может возникнуть в случае стихийных бедствий, техногенных факторов, террористических актов, нарушения правил хранения, а также неосторожности рабочего персонала.

В представленном разделе дипломного проекта производится оценка последствий взрыва и определяются меры защиты оператора и аппаратуры ПЭВМ от воздействия высоких температур в случае развития пожарной обстановки.


1. Теоретическая часть


Источником взрыва является хранилище сжиженного пропана. При нарушении емкости со сжиженным пропаном, хранящимся под высоким давлением, происходит его вскипание с быстрым испарением, выброс в атмосферу и образование облака газопаровоздушной смеси. Когда объемная концентрация пропана превышает 7-9%, может произойти взрыв.

Для определения последствий взрыва газопаровоздушной смеси (ГПВС) необходимо оценить физическую устойчивость объекта к поражающим факторам взрыва ГПВС. В рассматриваемой ситуации поражающими факторами являются ударная волна и возможность развития пожарной обстановки на объекте.

1.1. Оценка воздействия ударной волны на объект


1.1.1. Характеристики ударной волны

Ударная волна – это область резкого сжатия среды, которая в виде сферического слоя распространяется от места взрыва во все стороны со сверхзвуковой скоростью.

Основным параметром ударной волны, характеризующим ее разрушающее и поражающее воздействие, является избыточное давление во фронте ударной волны. Избыточное давление во фронте ударной волны – это разность между максимальным давлением во фронте ударной волны и нормальным атмосферным давлением .

Зону очага взрыва ГПВС можно представить в виде 3-х концентрических окружностей с центром в точке взрыва, которые имеют радиусы , и (рис.1), где:

·        - радиус зоны детонационной волны;

·        - радиус зоны поражения продуктами взрыва;

·        - зона действия воздушной ударной волны.

Для каждой из этих зон считают избыточное давление, по которому определяют последствия взрыва.

, м, где - количество сжиженного газа, т.

 
В пределах действует =1700кПа.

, м, в пределах изменяется от 1650 до 300кПа.

, кПа, где - расстояние от центра взрыва до места расположения объекта.

В третьей зоне определя­ется в зависимости от величины :

при ,

при


1.1.2. Поражающие факторы ударной волны


Поражение ударной волной возникает в результате воздействия избыточного давления и скоростного напора воздуха и приводит к разрушению зданий и поражениям людей (непосредственным, если человек находится на открытом пространстве, или косвенным, в результате ударов обломками разрушенных зданий и сооружений).

Применительно к гражданским и промышленным зданиям степени разрушения характеризуются следующим состоянием конструкции:

·        Cлабое разрушение: разрушаются оконные и дверные заполнения, легкие перегородки, частично кровля, возможны трещины в стенах верхних этажей. Здание может эксплуатироваться после проведения текущего ремонта.

·        Среднее разрушение: разрушение крыш, внутренних перегородок, окон, обрушение отдельных участков чердачных перекрытий. Для восстановления здания необходим капитальный ремонт.

·        Сильное разрушение: характеризуется разрушением несущих конструкций и перекрытий верхних этажей, образованием трещин в стенах и деформацией перекрытий нижних этажей. Использование помещений становится невозможным, а ремонт нецелесообразным.

·        Полное разрушение: разрушаются все основные элементы здания, включая несущие конструкции. Использовать здания невозможно.

Степень разрушения зданий зависит от устойчивости конструкции зданий к воздействию избыточного давления во фронте ударной волны.


1.2. Оценка пожарной обстановки


В зависимости от мощности взрыва и вызванных им разрушений в административном здании может развиться пожарная обстановка. Вероятность возникновения и распространения пожаров зависит от:

·        степени огнестойкости зданий и сооружений;

·        категории пожароопасности производства;

·        расстояния между зданиями и сооружениями;

·        погодных условий.


1.2.1. Влияние степени огнестойкости зданий и сооружений на развитие пожарной обстановки

Степень огнестойкости зданий и сооружений зависит от сопротивляемости материалов зданий к огню. По огнестойкости здания и сооружения делятся на пять категорий. I - основные элементы выполнены из несгораемых материалов, а несущие конструкции обладают повышенной сопротивляемостью к воздействию огня; II - основные элементы выполнены из несгораемых материалов; III - с каменными стенами и деревянными оштукатуренными перегородками и перекрытиями; IV - оштукатуренные деревянные здания; V – деревянные неоштукатуренные строения. Ориентировочное время развития пожара до полного охвата здания огнем: для зданий и сооружений I и II степени – не более 2ч, зданий и сооружений III степени – не более 1.5ч, для зданий и сооружений IV и V степеней – не более 1ч.

На развитие пожара в здании влияет также степень разрушения здания ударной волной. Отдельные и сплошные пожары возможны только на тех предприятиях, которые получили в основном слабые и средние разрушения, при сильных и полных разрушениях возможны только тления и горения в завалах.


1.2.2. Влияние категорий пожароопасности производства на развитие пожарной обстановки


По пожарной опасности объекты в соответствии с характером технологического процесса подразделяют на пять категорий: А, Б, В, Г, Д. Объекты категорий А - Г связаны с нефтеперерабатывающим, химическим, столярным, текстильным и подобного рода производством. Объекты категории Д связаны с хранением и переработкой негорючих материалов. Наиболее пожароопасны первые две категории.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18


 © 2010 Все права защищены.