рефераты

рефераты

 
 
рефераты рефераты

Меню

Анализ условий труда работников гальванического производства рефераты

2.2.2.6. Работы по очистке ванн должны проводиться в специальных одежде, обуви и противогазе.

2.2.2.7. Работы на штангах ванны с повышенным напряжением следует выполнять в резиновых перчатках и сапогах, в прорезиненном фартуке.

2.2.2.8. При работах с веществами и растворами, вызывающими раздражение кожи и слизистой оболочки носа, следует пользоваться профилактическими пастами или мазями.

2.2.2.9. Работающим на ваннах с электролитами, растворами, содержащими вещества 1-го, 2-го классов опасности, запрещается выходить в специальных одежде, обуви из рабочего помещения, хранить специальные одежду, обувь и другие средства индивидуальной защиты вместе с личной одеждой.

2.2.2.10. При работе металлизаторами следует применять очки со светофильтрами для защиты глаз от потока ультрафиолетовых лучей.

2.2.2.11. На участках нанесения металлопокрытий следует иметь запасные специальные одежду и обувь, выдаваемые в случае аварии.

2.2.2.12. Диэлектрические защитные средства следует систематически проверять в сроки, установленные в Межотраслевых правилах по охране труда (правилах безопасности) при эксплуатации электроустановок.

2.2.2.13. Работы на крацевальном станке должны выполняться в защитных очках.

2.2.2.14. Специальная одежда (костюмы или халаты) работников, занятых шлифованием и полированием изделий из магниевых сплавов, должна быть изготовлена из плотного материала - хлопчатобумажной ткани с огнестойкой пропиткой без карманов и быстро сниматься.

2.2.2.15. При шлифовании и полировании изделий из медных сплавов необходимо пользоваться респираторами.

2.2.2.16. Для снижения уровня шума на рабочих местах (ультразвуковая установка, песко-, дробеструйные и дробеметные установки) необходимо применять средства защиты органов слуха.

2.2.2.17. При очистке деталей в камерах открытого типа работник должен быть в защитном шлеме (скафандре) с принудительной подачей чистого воздуха из специальной установки. В специальной установке должны быть устройство для регулирования температуры воздуха, подаваемого в защитный шлем (скафандр), и фильтры очистки воздуха. Проверка исправности защитных шлемов (скафандров) и шлангов, подающих воздух, должна производиться ежедневно. Обнаруженные дефекты должны немедленно устраняться. Заменять защитные стекла в шлеме (скафандре) следует немедленно после их повреждения и перед каждой рабочей сменой, если стекла заматированы.

2.2.2.18. Работники должны быть обучены правилам пользования средствами индивидуальной защиты и способам проверки их исправности.

2.2.2.19. В цехе должны быть аптечки, укомплектованные необходимыми медикаментами и перевязочными материалами. Вблизи рабочих мест должны всегда находиться емкости с 3 %-ным раствором борной кислоты для нейтрализации щелочи и 3 %-ным раствором питьевой соды для нейтрализации кислоты.

2.2.2.20. Все работники должны уметь оказывать первую помощь пострадавшим при отравлении и ожогах кислотой, щелочью и другими химическими веществами, а также при поражениях электрическим током. Правила оказания первой помощи должны быть вывешены в цехе на видном месте.


ГЛАВА 3. МЕРОПРИЯТИЯПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ ПРОЦЕССОВ ГАЛЬВАНПРОИЗВОДСТВА

3.1 АНАЛИЗ ОВПФ ГАЛЬВАНИЧЕСКОГО ПРОИЗВОДСТВА


В гальванических цехах источниками опасности являются технологические процессы подготовки поверхности, приготовления растворов и электролитов, нанесение покрытий. Методы очистки поверхностей характеризуются повышенной запыленностью, шумом и вибрацией. Используемые для приготовления растворов щелочи, кислоты, соли при воздействии на организм могут вызвать отравление или профзаболевание. Использование ручного виброинструмента для шлифования поверхностей может быть причиной виброболезни. Работа на ультразвуковых ваннах очистки сопряжена с воздействием на работающего звуковых и ультразвуковых колебаний. Кроме того, обилие промывных ванн в помещении создает повышенную влажность. Нормальные для работы условия обеспечиваются хорошим освещением, приточно-вытяжной вентиляцией и поддержанием нормальной температуры воздуха в цехе.

Наиболее вредными и опасными в обращении веществами являются:

НАТР ЕДКИЙ (NaOH)

При попадании раствора или пыли на кожу образуется мягкий струп. Возникают язвы, экземы, особенно в суставных складках пальцев. Опасно попадание даже самых малых количеств NaOH в глаза; поражается не только роговица, но и в следствии быстрого проникновения NaOH в глубь страдают и глубокие части глаза. Исходом может быть слепота. При попадании на кожу —обмывание пораженного участка струей воды в течении 10мин, затем примочки из 5% раствора уксусной или лимонной кислоты. При попадании в глаза —тщательное немедленное промывание струей воды или физиологическим раствором в течении 10— мин. ПДК —0,5 мг/м3.

Индивидуальная защита: спецодежда из плотной ткани, резиновые перчатки, нарукавники, фартуки, обувь.

СОДА КАЛЬЦИНИРОВАННАЯ (Na2 CO4)

При работе с содой кальцинированной наблюдаются изъявления слизистой носа, подобно возникающим при действии соединений хрома. Вдыхание пыли может вызывать раздражение дыхательных путей, коньюктивит. При длительной работе с растворами возможны: экземы, раздражение кожи. Концентрированный раствор Na2 CO4 вызывает ожог, некроз, а в последующем помутнение роговицы. ПДК —2мг/м3.

Индивидуальная защита: спецодежда из плотной ткани, резиновые перчатки, нарукавники, фартук, обувь.

СОЛЯНАЯ КИСЛОТА (HCL)

При высоких концентрациях — раздражение слизистых, в особенности носа, коньюктивит, помутнение роговицы, покалывание в груди, насморк, кашель, хроническое отравление вызывает катары дыхательных путей, разрушение зубов, изменение слизистой носа и даже пропадение носовой перегородки; желудочно-кишечные расстройства, возможны воспалительные заболевания кожи. Обычно причина отравлений не газообразный HCL, а туман HCL, образующийся при взаимодействии газа с водяными парами воздуха.

При отравлении, немедленно вывести пострадавшего на свежий воздух, освободить от стесняющей дыхание одежды. Ингаляция кислородом. Промывание глаз, носа, полоскание 2% раствором соды. При поражении глаз после промывания впустить в глаза по 1 капле 2% раствора новокаина. При попадании крепкой кислоты на кожу — немедленное обмывание ее водой в течении 5 — мин. ПДК — 5 мг/м3.

Индивидуальная защита: фильтрующий промышленный противогаз марки В, защитные герметичные очки. Спецодежда из кислотоупорной ткани. Рукавицы, перчатки из стойкой резины. Сапоги из противокислотной резины.

СИНИЛЬНАЯ КИСЛОТА (HCN)

Отравления синильной кислотой и её соединениями возможны при обработке руды (цианировании), гальваническом покрытии металлов, дезинсекции и дератизации помещений и т. п. Попадая в организм через дыхательные пути, реже — через кожу, синильная кислота блокирует дыхательный фермент цитохромоксидазу и вызывает кислородное голодание тканей. При острых отравлениях наблюдаются раздражение слизистых оболочек, слабость, головокружение, тошнота, рвота; затем преобладают дыхательные расстройства — редкое глубокое дыхание, мучительная одышка, наступают замедление и остановка дыхания. При хронических отравлениях синильной кислотой беспокоят головная боль, утомляемость, отмечаются низкое артериальное давление, изменения электрокардиограммы, в крови — снижение уровня сахара и повышенное содержание гемоглобина, молочной кислоты и т. д. Действие цианидов калия и натрия на кожу может вызвать образование трещин, развитие экземы.

Индивидуальная защита: фильтрующий промышленный противогаз, защитные герметичные очки. Спецодежда из кислотоупорной ткани. Рукавицы, перчатки из стойкой резины. Сапоги из противокислотной резины.

АММИАК (NH3)

Пары аммиака сильно раздражают слизистые оболочки глаз и органов дыхания, а также кожные покровы. Это мы и воспринимаем как резкий запах. Пары аммиака вызывают обильное слезотечение, боль в глазах, химический ожог конъюктивы и роговицы, потерю зрения, приступы кашля, покраснение и зуд кожи. При соприкосновении сжиженного аммиака и его растворов с кожей возникает жжение, возможен химический ожог с пузырями, изъязвлениями. Кроме того, сжиженный аммиак при испарении поглощает тепло, и при соприкосновении с кожей возникает обморожение различной степени. ПДК в воздухе рабочей зоны производственного помещения составляет 20 мг/м³.

3.2 ВЕНТИЛЯЦИЯ ГАЛЬВАНИЧЕСКОГО ЦЕХА


Существуют нормы предельно допустимых концентраций ПДК вредных веществ в воздухе рабочих помещений. Эти нормы включают довольно много веществ, выделяющихся в процессе работы гальванического оборудования (брызги и пыль химикатов, пыль абразивов, пары растворителей и т.п.). Для того чтобы их концентрация не превысила допустимого предела, применяются различные меры. Наиболее распространенной и наиболее действенной из них является оборудование цеха приточно- вытяжной вентиляцией, назначение которой состоит в том, чтобы за счет обмена воздуха, т.е. отсоса загрязненного и подачи свежего, поддерживать содержание вредных веществ в воздухе гальванического цеха на уровне, не превышающем требований ПДК.

Вентиляция воздуха может происходить за счет разности его температур внутри и снаружи помещения, через открытые окна, случайные щели, даже через стены при их относительно пористом материале, но эта так называемая естественная вентиляция мало производительна, а по направлению и скорости движения воздуха плохо поддается управлению. Значительно более эффективна принудительная промышленная вентиляция, при которой воздух отсасывается или подается вентилятором с силовым приводом. Принудительная вентиляция позволяет отсасывать воздух с нужной интенсивностью непосредственно из мест вредных выделений и подавать свежий воздух, рационально распределяя его по помещению.

Вся приточно - вытяжная система вентиляции гальванического производства, а часто и сообщающихся с ним соседних помещений, представляет собой единое целое, в котором все движения воздуха в трубопроводах и в самом помещении связаны между собой.

Поэтому, какое-либо нарушение предусмотренной проектом взаимозависимости путем, например, переделки каких-нибудь элементов воздуховода или, что гораздо хуже и абсолютно недопустимо, присоединением дополнительных потребителей, не подкрепленное расчетом и соответствующими конструктивными мероприятиями, может катастрофически сказаться на вентиляции всего помещения.

Изготовление и переделки вентиляции должны проводится только квалифицированным специалистам, так как исправность вентиляции - это вопрос здоровья и даже жизни работающих в гальваническом цехе специалистов.

Бортовые отсосы гальванического оборудования

Конструкция бортового отсоса сказывается не только на эффективности работы вентиляции, но и на удобстве работы гальваника, а, следовательно, и на его производительности.

Системы вентиляции, применяемые в гальванических цехах это: вытяжные шкафы, внутри которых устанавливается оборудование; вытяжные зонты (колпаки), устанавливаемые над оборудованием, в том числе над электрофлотаторами; отсасывающие решетки, устанавливаемые сбоку от оборудования с его нерабочей стороны; бортовые отсосы, устанавливаемые на уровне верхнего края гальванических ванн и установок обработки поверхностей. Эти системы показаны на Рис.1


Рис.1 Воздухопринемные устройства местных вытяжных систем: вытяжной зонт (а); вытяжной шкаф (б); бортовой отсос (в).


Характеристика отсасывающих устройств представлена в Таблице 2.

Таблица 2. Характеристика вентиляционных отсосов, применяемых в гальванических цехах.

Тип

Достоинства

Недостатки

Области применения

Вытяжной шкаф

Хорошо изолирует помещения от вредных выделений из оборудования, стоящего внутри шкафа

Затрудненность доступа к оборудованию. При работе над оборудованием человек находится в зоне вредных выделений

При травлении цветных металлов

Вытяжной зонт (колпак)

Простота изготовления

При работе над оборудованием человек находится в струе отсасываемых вредных веществ. Расход воздуха очень велик, гак как трудно избежать непроизводительного подсасывания воздуха с боков

При работе в наливных колоколах с газвыделяющими щелочными электролитами или при очистке колоколов от наростов травлением в кислотах

Панель Чернобережского

(панели равномерного всасывания)

Мало мешает работе, особенно если оборудование стоит у стены и панель не мешает проходу. Хорошо улавливает выделения легких газов, например водяного пара

Требует значительного расхода воздуха. Неудобен ее монтаж при свободно стоящем оборудовании

На промывочных ваннах с горячей водой при их одностороннем обслуживании. В гальванических цехах применяется редко

Бортовой отсос

Хорошо удаляет брызги и тяжелые газы и в большинстве случаев легкие газы. Рабочий, наклоняющийся над оборудованием, находится вне зоны вредных выделений

Увеличивает ширину оборудования, несколько затрудняя доступ к противоположному от рабочего краю ванны

На всех видах гальванического оборудования, включая даже некоторые типы вращающихся колоколов и барабанов


Принцип работы наиболее универсального для гальванического оборудования вентиляционного оборудования - «бортового отсоса» в том, что всасываемый с большой скоростью через узкую заборную щель отсоса воздух образует над зеркалом раствора электролита сильную горизонтальную струю (факел), которая сбивает с вертикального пути выбрасываемые из раствора капли и этим заставляет их главную массу упасть обратно в ванну, а остальные капли и газы увлекаются в вентиляционные отсосы.

Эта работа местного вентиляционного отсоса особенно хорошо наблюдается над гальванической ванной хромирования, брызги от которой ярко окрашены и их путь легко проследить.

3.2.1 РАСЧЁТ БОРТОВОГО ОТСОСА

Бортовые отсосы получили наибольшее распространение в гальваническом производстве, так как они удобны, эффективны и экономичны.

Бортовые отсосы применяют для удаления вредных выделений с поверхности растворов, находящихся в различных ванных, где происходят процессы металлопокрытия и травления. Различают однобортовые отсосы, когда щель отсоса расположена вдоль одной из длинных сторон ванны, двухбортовые, когда щели расположены у двух противоположных сторон, и угловые — при расположении щелей у двух соседних сторон.

Бортовой отсос называют простым (рис. 2,а), когда щели расположены в вертикальной плоскости, и опрокинутым (рис. 2, б),


Рис. 2. Бортовые отсосы: а — простой; б — опрокинутый.


Когда щели расположены горизонтально в плоскости, параллельной зеркалу ванны. Чем токсичнее выделения с зеркала ванны, тем ближе их нужно прижать к зеркалу, чтобы не допустить попадания вредных веществ в зону дыхания работающих у ванн.

Простые отсосы следует применять при высоком стоянии уровня растврра в ванне, когда расстояние до щели отсоса Н составляет менее 80—150 мм; при более низком стоянии уровня раствора (//=150... 300 мм и более) значительно меньшего расхода воздуха требуют опрокинутые бортовые отсосы.

Расход воздуха на все виды бортовых отсосов тем больше, чем больше ширина ванны В, выше температура раствора и чем ближе к поверхности раствора необходимо прижать поток с учетом токсичности выделений.

Определение расхода воздуха, отсасываемого от горячих ванн. Расход воздуха, отсасываемого от промышленных ванн, впервые теоретически определил инж. И. Л. Виварели.

При работе бортового отсоса на частицу воздуха, находящуюся у поверхности раствора в ванне, действуют подъемная сила и сила всасывания. Под влиянием их частица движется по криволинейной траектории.

Исходя из условия постоянства подъемной силы Р в потоке (при постоянных температуре и плотности среды) по всему его пути, можно записать



где — плотность воздуха в потоке; — плотность окружающего воздуха;  — масса потока в том же сечении.

Пренебрегая увеличением массы на небольшом расстоянии от ванны, можно принять ускорение постоянным, и тогда сила Р может быть определена как



где u — скорость восходящего потока; t—время с момента отрыва потока от зеркала ванны; отсюда



Заменяя отношение плотностей отношением абсолютных температур, получим:



После интегрирования при uнач=0 определим



На небольшом расстоянии от ванны отношение избыточных температур может быть принято равным



где Тв — абсолютная температура нагретой жидкости в ванне.

Подставляя вместо



получим:



Скорость, создаваемая однобортовым отсосом, рассматриваемым как линейный сток, может быть определена по формуле



где L—объемный расход воздуха для всей щели отсоса. м3/с; — угол, образованный границами всасывающего факела; г — расстояние от щели до рассматриваемой точки.

На основании приведенных рассуждений И. Л. Виварели были получены расчетные формулы.

Ванна считается холодной, если температура жидкости в ней примерно равна температуре воздуха в помещении и горячей, если Объемный расход воздуха L, м3/ч, отсасываемого от горячих ванн, может быть определен по формуле



где Кз— коэффициент запаса, равный 1,5—1,75; для ванн с особо вредными растворами Кз=1,75...2; КТ— коэффициент для учета подсоса воздуха с торцов ванны, зависящий от отношения ширины ванны В к ее длине l для однобортового простого

для двухбортового  при наличии сдува КТ=1;

Б — безразмерная характеристика, равная для однобортового отсоса 0.35, а для двухбортового 0,5; р — угол между границами всасывающего факела, рад; ТВ и ТПОМ — абсолютные температуры соответственно жидкости в ванне и воздуха в помещении К.

Пример 1. Определить расход воздуха, удаляемого двухбортовым отсосом ванны травления серной кислотой, установленной у стены, при следующих данных tn=60° С; tПОМ= 16° С; B=0,9 м; l= 1 м; φ = π/2.

Решение. Принимаем коэффициент запаса K3=1,5, коэффициент для учета подсоса воздуха с торцов ванны

безразмерную характеристику Б=0,5.

В этом случае объемный расход отсасываемого воздуха будет равен:


3.3 ОЧИСТКА СТОЧНЫХ ВОД ГАЛЬВАНИЧЕСКОГО ЦЕХА


Предназначение очистных сооружений заключается в том, чтобы очистить сточные воды (кислотно-щелочных, хромсодержащих, цианистых, фторсодержащих) после операций промывки в гальваническом производстве до норм предельно допустимых концентраций ПДК вредных веществ по тяжелым металлам с последующим сбросом очищенной воды в систему канализации или возвратом на повторное использование в цикле оборотного водоснабжения предприятия.

Сточные воды из гальванического цеха поступают самотеком на очистные сооружения по раздельным трубопроводам для каждого вида загрязнений. Смешение стоков разных видов не допускается. Стоки содержат циан, 6-ти валентный хром, кислоты, щелочи и соли тяжелых металлов (никеля, цинка, железа), содержание которых при сбросе в городскую канализацию лимитируется санитарными нормами.

Сточные воды после ванн электрохимического обезжиривания и после ванн травления гальванического цеха, загрязненные кислотами, щелочами и солями тяжелых металлов очищаются химическим способом на заводских очистных сооружениях.

Этот метод обработки кислотно - щелочных стоков учитывает возможность наличия в кислотно – щелочных стоках примесей тяжелых металлов. Сущность процесса обезвреживания кислотно-щелочных стоков заключается во взаимной нейтрализации этих стоков с последующей донейтрализацией их раствором щелочи и высаждении растворенных металлов в виде гидроокисей раствором гашеной извести.

Установка предназначена для очистки промывных вод и регенерации отработанных травильных растворов и рабочих электролитов: хромирования, меднения, электрополирования.

Установка комплексной очистки сточных вод гальванического производства включает четыре основных узла:

I – узел очистки промывных вод;

II – узел регенерации отработанных растворов электролитов;

III – узел регенерации отработанных травильных растворов;

IV – узел регенерации моющих и обезжиривающих растворов.

Комплексная установка работает по следующей технологической схеме (рис. 3). Промывные воды собираются в усреднитель 1, где производится при необходимости корректировка рН путем добавления реагентов с узла реагентной обработки 2. После предварительной очистки от механических примесей на фильтре 3 воды подаются на обратноосмотическое обессоливание в мембранный модуль 4, где под действием давления до 5 МПа происходит концентрирование солей тяжелых металлов на полупроницаемой мембране. Очищенная до требуемых показателей вода (пермеат) возвращается для повторного использования в ванны промывки. Концентрат поступает в реактор-нейтрализатор 5, где с помощью химических реагентов оставшиеся тяжелые металлы переводятся в нерастворимые соединения в виде гидроокисей. Полученная тонкодисперсная суспензия разделяется на микрофильтре 6, осветленный раствор подается на выпарную установку 7 с конденсатором, конденсат возвращается на повторное использование. Сухой остаток, в основном, сульфаты и хлориды, утилизируется.

Обезвоженный шлам после фильтра 6 направляется в электролизер 8, где растворяется в отработанных электролитах, которые подаются в электролизер для регенерации. В электролизере происходит выделение в виде цветного лома металла и восстановление до первоначальной формы основных компонентов электролита. Регенерированные рабочие электролиты подвергаются корректировке по составу и используются повторно.

Отработанные травильные растворы соляной и других минеральных кислот из емкости 9 подаются на узел регенерации, где в испарителе 10 выделяется и конденсируется в холодильнике 11 фракция соляной кислоты, направляемая на повторное использование. Сконцентрированный раствор (кубовый остаток минеральной кислоты) далее подвергается электрохимическому воздействию в электролизере (или электродиализаторе) 12 с целью извлечения примесей тяжелых загрязняющих металлов и возврата регенерированного травильного раствора кислот в основное производство. Примеси металлов утилизируются, как цветной лом.

Отработанные моющие и обезжиривающие растворы, содержащие как основную примесь эмульгированные нефтепродукты, подвергаются очистке на ультрафильтрационной установке 13 на базе трубчатых ультрафильтров типа БТУ 05/2 и возвращаются на повторное использование.


Рис. 3. Технологическая схема комплексной установки очистки сточных вод гальванических производств:

1 – усреднитель; 2 – узел реагентной обработки; 3 – фильтр;

4 – обратноосмотический мембранный модуль; 5 – реактор-

нейтрализатор; 6 – микрофильтр; 7 – выпарная установка;

8 – электролизер; 9 – емкость; 10 – испаритель; 11 – холодильник;

12 – электродиализатор; 13 – ультрафильтрационная установка


Установка может работать в едином комплексе или как отдельные локальные очистные сооружения.

3.4 УТИЛИЗАЦИЯ ГАЛЬВАНИЧЕСКИХ ОТХОДОВ


Гальванический шлам является побочным продуктом гальваностегии и гальванопластики.

Гальванопластика является частью методики электролитического осаждения металлов, итогом которого становится точное копирование формы предмета.

Гальваностегия — способ нанесения защитного или декоративного покрытия на какое-либо изделие путём электрохимической реакции.

Чаще всего в качестве защитного металла используется медь, реже - железо, хром, серебро и никель.

Получаемые в результате вышеуказанных методик гальваношламы внешне представляют собой пастообразную массу сложного и нестабильного состава. Её цвет колеблется от тёмно-серого до тёмно-коричневого. В состав гальваношламов кроме железа и кальция входят представляющие опасность для природной среды и здоровья человека соединения тяжёлых металлов. Это марганец, свинец, медь, никель и т.д.

Наиболее перспективным является способ утилизации гальванических отходов, который заключается в их применении в строительной сфере. Сейчас четвёртая часть отходов химических производств применяется повторно. Во многих европейских странах широко используется восстановление металлов из отходов. К примеру, в Германии 38 процентов железа используется повторно, а в Великобритании - 60 процентов свинца. Однако добыча металла из гальваношлама приносит экономическую выгоду только при его высокой концентрации. А гальваношламы, как правило, включают в себя довольно невысокие концентрации ценных металлов. Кроме того, для их добычи требуется применение специальных химических технологий. Поэтому добыча цветных металлов из отходов гальванопластики и гальваностегии не приносит экономическую выгоду.

Наиболее перспективным, широко применяемым во многих странах мира способом утилизации гальваношлама является использование его в качестве добавок при изготовлении строительных материалов.

В России главным направлением утилизации гальванических шламов является использование их при изготовлении строительных материалов и дорожных покрытий. Гальванические отходы при этом связываются инертными веществами или происходит процесс их остекленения под воздействием высоких температур для предотвращения проявления токсичных свойств.


ЗАКЛЮЧЕНИЕ


Как видно из изложенного, на большинстве участков гальванического производства происходит выделение в воздух рабочей зоны жидкостных, газообразных и пылевых аэрозолей.

Одним из наиболее неблагоприятных факторов гальванического производства является загрязнение наружного воздуха на территории предприятия и внутренних помещениях соединениями металлов и различными ядовитыми парами, а также выбросы кислоты.

Во избежание неприятных чрезвычайных ситуаций необходимо заранее проводить проверку рабочего оборудования, газоводов, кислотопроводов, воздуховодов систем безопасности и прочего оборудования. Проводить планово-предупредительные работы. Постоянно соблюдать меры предосторожности и правила техники безопасности.



ПРИЛОЖЕНИЕ 1

Перечень нормативных правовых актов.

ГОСТ 12.1.010-76ССБТ. Взрывобезопасность. Общие требования (И-1-83).

ГОСТ 12.3.002-75ССБТ. Процессы производственные. Общие требования безопасности (И-1-80, И-2-91).

ГОСТ 12.1.005-88ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны.

ГОСТ 12.1.003-83ССБТ. Шум. Общие требования безопасности (И-1-89).

ГОСТ 12.1.012-90ССБТ. Вибрационная безопасность. Общие требования.

ГОСТ 12.1.001-89ССБТ. Ультразвук. Общие требования безопасности.

ГОСТ 12.1.038-82ССБТ. Электробезопасность. Предельно допустимые уровни напряжений прикосновения и токов.

СанПиН 2.2.4.548-96 Гигиенические требования к микроклимату производственных помещений.

СанПиН 2.2.4/2.1.8.582-96 Гигиенические требования на работах с источниками воздушного и контактного ультразвука промышленного, медицинского и бытового назначения.

ГОСТ 12.1.004-91ССБТ. Пожарная безопасность. Общие требования (И-1-95).

ГОСТ 12.3.028-82ССБТ. Процессы обработки абразивным и эльборовым инструментом. Требования безопасности (И-1-84, И-2-92)

ГОСТ 12.3.009-76ССБТ. Работы погрузочно-разгрузочные. Общие требования безопасности (И-1-82).

ГОСТ 12.3.020-80ССБТ. Процессы перемещения грузов на предприятиях. Общие требования безопасности.

ГОСТ 12.2.061-81ССБТ. Оборудование производственное. Общие требования безопасности к рабочим местам.

ГОСТ 12.2.032-78ССБТ. Рабочее место при выполнении работ сидя. Общие эргономические требования.

ГОСТ 12.2.033-78ССБТ. Рабочее место при выполнении работ стоя. Общие эргономические требования.

ГОСТ 12.2.062-81ССБТ. Оборудование производственное. Ограждения защитные (И-1-83).

ГОСТ 22269-76Система «человек-машина». Рабочее место оператора. Взаимное расположение элементов рабочего места. Общие эргономические требования.

ГОСТ 12.0.004-90ССБТ. Организация обучения безопасности. Общие положения.

ГОСТ 12.4.011-89ССБТ. Средства защиты работающих. Общие требования и классификация.



СПИСОК ЛИТЕРАТУРЫ


1.       Гальванотехника. Справочное издание. Ажогин Ф.Ф., Беленький М.А., Гальев Ч.В. и др. М. «Металлургия», 1987 год.

2.       Справочник по гальванике. Каданер А.И. 1976 год.

3.       Обезжиривание, травление и полирование металлов. Грилихес С.Я., М., Производственно-издательский комбинат ВИНТИ.

4.       Краткий справочник Гальванотехника . Ямнольский А.М., Ильин В.А., «Машиностроение» 1981 год.

5.       Защитные покрытия металлов. Лайнер В.И. М., «Металлургия» 1974 год.

6.       Основы гальваники. Вячеславов П.М., «Лениздат», 1960 год.

7.       Практические советы гальванику. Лобанов С.А. «Машиностроение» 1983 год.

8.       Организация гальванического производства. Виноградов С.С., М «Глобус» 2005 год.

9.       Электролитическое осаждение драгоценных металлов, Буркат Г.К., М, Технический комитет по стандартизации ТК 213, 1993 год.

10.   Производственная санитария и гигиена труда. Уч. пос. для вузов, Глебова Е.В., М. Высш. шк., 2005 год.

11.   Экологически безопасное гальваническое производство. С.С. Виноградов, М «Глобус» 1998 год.

12.   Гальванические покрытия в машиностроении. Спавочник в 2-х томах, Шлугер М.А., М «Машиностроение» 1985 год.

13.   Отопление и вентиляция. Учебник для вузов. В 2-х ч. Ч. 2. Вентиляция. Под ред. В. Н. Богословского. М., Стройиздат, 1976 год.


Страницы: 1, 2, 3